Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Theses/Dissertations

Finite element

Discipline
Institution
Publication Year
Publication

Articles 1 - 30 of 39

Full-Text Articles in Mechanical Engineering

Modeling, Analysis, And Simulation To Reveal The Mechanisms Of Ciliary Beating, Louis Woodhams Aug 2022

Modeling, Analysis, And Simulation To Reveal The Mechanisms Of Ciliary Beating, Louis Woodhams

McKelvey School of Engineering Theses & Dissertations

Cilia are microscopic cellular appendages that help us breathe by clearing our airways, maintain the health of our central nervous system by circulating cerebrospinal fluid, and allow us to reproduce by transporting eggs and propelling sperm cells. Cilia even determine the asymmetry of our internal organs during embryonic development. However, the mechanisms underlying ciliary beating are not fully understood. Questions remain as to how arrays of the motor protein dynein generate the propulsive waveforms observed in cilia and how structural elements within the cilium and its connection to the cell deform during beating. In the current work, mathematical modeling, analysis, …


The Influence Of Frontal And Axial Plane Deformities On Contact Mechanics During Squatting: A Finite Element Study, Yidan Xu Jan 2022

The Influence Of Frontal And Axial Plane Deformities On Contact Mechanics During Squatting: A Finite Element Study, Yidan Xu

Electronic Thesis and Dissertation Repository

Knee Osteoarthritis (KOA) is a degenerative joint disease and a leading cause of disability worldwide. Lower limb malalignment was a risky factor leading to KOA, altering the load distributions. This study aimed to study the influence of knee deformities on knee contact mechanics and knee kinematics during squatting. A full-leg squat FE model was developed based on general open-source models and validated with in vivo studies to investigate the outputs under frontal malalignment (valgus 8° to varus 8°) and axial malalignment (miserable malalignment 30°). As a result, Varus-aligned and miserable aligned models increased medial tibiofemoral force and lateral patellar contact …


Atomistic-Continuum Membrane And Machine Learning Models For Two-Dimensional Materials, Upenda Yadav Jan 2022

Atomistic-Continuum Membrane And Machine Learning Models For Two-Dimensional Materials, Upenda Yadav

Dissertations, Master's Theses and Master's Reports

“What could we do with layered structures with just the right layers?” asked Richard Feynman in his famous 1959 lecture, “There’s plenty of room at the bottom.” With the help of the amazing developments of the past several years, we are coming close to answering that question. In 2004, graphene was first isolated from graphite and only six short years later it won the Nobel Prize in Physics. Graphene is one atomic layer of Carbon, it is the thinnest and yet the strongest materials we have ever seen. It is 200 times stronger than its equivalent weight in steel and …


Musculoskeletal Adaptation Of Young And Older Adults In Response To Environmental, Physical, And Cognitive Conditions, Amy E. Holcomb Aug 2021

Musculoskeletal Adaptation Of Young And Older Adults In Response To Environmental, Physical, And Cognitive Conditions, Amy E. Holcomb

Boise State University Theses and Dissertations

Accidental falls present a large functional and financial burden among people aged 65 years and older. Falls, injuries associated with falls, and the fear of falling decrease quality of life, physical function, and independence for older adults. To prevent falls, improve stability, and protect joints from damage or injury, the typical response to "challenging" conditions include cautious gait, increase muscle co-contraction, and decreased range of motion. These compensatory strategies are more pronounced in the older adult population with apprehensive "cautious" gait at slower speeds, decreased knee flexion, and increased muscle activation around the knee and ankle. The underlying mechanisms and …


3d Acoustic Pipe Locator Imaging Based On Finite Element Analysis, Yi Liu Jan 2021

3d Acoustic Pipe Locator Imaging Based On Finite Element Analysis, Yi Liu

Graduate College Dissertations and Theses

A more complex underground pipe system is growing with the expansion of cities. However, there is no comprehensive database of underground pipes. Thus, it is urgent to build database with materials, positions, diameters, and etc. To locate the pipes is the first step. There are many ways to find pipes such as metal detector, ground penetrating radar, and acoustic method. Metal detectors are becoming increasing ineffective with more and more nonmetal is using in pipes. Ground penetrating radar is a precise way to find pipes but it is only works well under low moisture environment. Additionally, ground penetrating radar is …


Tibial Strains And Tray-Bone Micromotions After Total Knee Arthroplasty: Computational Studies Evaluating The Tibial Fixation, Huizhou Yang Jan 2021

Tibial Strains And Tray-Bone Micromotions After Total Knee Arthroplasty: Computational Studies Evaluating The Tibial Fixation, Huizhou Yang

Electronic Theses and Dissertations

Cemented and cementless fixation in total knee arthroplasty (TKA) have been successfully used for decades. As the number of younger and more active patients treated with TKA continues to increase, long-term implant survivorship is of increasing importance. One of the most common complications and hence the reason for revision is mechanical loosening (23.1% of all revised TKA). The loosening mechanisms have been proposed for different fixation types. For cemented fixation, bone remodeling after surgery is regulated by the changes in strain energy density (SED). The recruitment of osteoclasts and osteoblasts is controlled by SED-related signals. Insufficient stimuli can promote bone …


Estimation Of The Fatigue Life Of Additively Manufactured Metallic Components Using Modified Strain Life Parameters Based On Surface Roughness, Peter Grohs Dec 2019

Estimation Of The Fatigue Life Of Additively Manufactured Metallic Components Using Modified Strain Life Parameters Based On Surface Roughness, Peter Grohs

Masters Theses

In this study, a method is developed to estimate the effects of surface roughness on the fatigue life of additively manufactured titanium Ti6Al4V, aluminum 7075–T6, and steel 4340 alloys through modified strain life parameters using finite element analysis (FEA). This method is highly beneficial to the fatigue analysis of as-built additively manufactured metal components, which possess rough surfaces that reduce fatigue life significantly but are challenging to analyze directly using finite element simulation because of complex geometries, i.e., modeling an exact surface profile is arduous.

An effective stress concentration factor, incorporating roughness data, is defined to quantify their effects on …


The Axisymmetric Harmonic Element Including Gyroscopic Effects: A Complete Derivation, Zachary Charles Glick Aug 2019

The Axisymmetric Harmonic Element Including Gyroscopic Effects: A Complete Derivation, Zachary Charles Glick

Graduate Theses - Mechanical Engineering

Various types of finite elements have been used in the prediction of critical speeds of turbomachinery. Among these, axisymmetric harmonic elements provide both accurate natural frequency prediction and computational speed. Yet, a full derivation of such an element including gyroscopic effects is not widely available in the relevant literature. In this work, the finite elements for rotordynamics available in the literature are reviewed. Derivations necessary for the axisymmetric harmonic element mass, gyroscopic damping, and stiffness matrices and the equations of motion are clearly expounded using Hamilton’s principle. The formulation is applied to two model shafts, and the comparison of results …


Response Transmissibility For Load Identification Improved By Optimal Sensor Locations, Hanaa M. Alqam Aug 2019

Response Transmissibility For Load Identification Improved By Optimal Sensor Locations, Hanaa M. Alqam

Theses and Dissertations

A knowledge of loads acting on a structure is important for analysis and design. There are many applications in which it is difficult to measure directly the dynamic loads acting on a component. In such situations, it may be possible to estimate the imposed loads through a measurement of the system output response. Load identification through output response measurement is an inverse problem that is not only ill-conditioned, but in general leads to multiple solutions. Therefore, additional information, such as number and locations of the imposed loads must be provided ahead of time in order to allow for a unique …


Dynamic Response Of A Hingeless Helicopter Rotor Blade At Hovering And Forward Flights, Pratik Sarker Dec 2018

Dynamic Response Of A Hingeless Helicopter Rotor Blade At Hovering And Forward Flights, Pratik Sarker

University of New Orleans Theses and Dissertations

The helicopter possesses the unrivaled capacity for vertical takeoff and landing which has made the helicopter suitable for numerous tasks such as carrying passengers and equipment, providing air medical services, firefighting, and other military and civil tasks. The nature of the aerodynamic environment surrounding the helicopter gives rise to a significant amount of vibration to its whole body. Among different sources of vibrations, the main rotor blade is the major contributor. The dynamic characteristics of the hingeless rotor consisting of elastic blades are of particular interest because of the strongly coupled equations of motion. The elastic rotor blades are subjected …


Finite Element Modeling And Experimental Characterization Of Knot Configuration Effect On The Mechanical Performance Of Surgical Suture, Arz Y. Qwam Alden Dec 2018

Finite Element Modeling And Experimental Characterization Of Knot Configuration Effect On The Mechanical Performance Of Surgical Suture, Arz Y. Qwam Alden

Dissertations

Tendon injuries in orthopedic surgery and sports medicine are escalating; hence there is great interest in improving tendon repair. The integrity of tendon repair depends in part on a combination of suture material, suture size and knot configuration. Recent studies have indicated the failure of surgical knots as a failure mode during surgical repair. Further, there is still no consensus on the ideal (best/safest) surgical knot techniques. Also, this failure mode is related to stress concentrations, which cannot be easily established with traditional tensile testing. Most researchers have focused on the measurement and comparison of the gross structural response of …


Translating Data From The Laboratory Into Simulation: A Computational Framework For Subject-Specific Finite Element Musculoskeletal Simulation, Donald R. Hume Aug 2018

Translating Data From The Laboratory Into Simulation: A Computational Framework For Subject-Specific Finite Element Musculoskeletal Simulation, Donald R. Hume

Electronic Theses and Dissertations

Computational modeling is a powerful tool which has been used to inform decisions made by engineers, scientists, and clinicians for decades. Musculoskeletal modeling has emerged as a computational modeling technique used to understand the interaction between the body and its surroundings. There are several common approaches used for musculoskeletal modeling which take advantage of different model formulations to obtain information of interest. Unfortunately, models with different joint formulations inherit disparities in representations of ligament, muscle, and cartilage at joints of interest. These differences affect the way the joint functions and limit the insight it provides through computational analysis. Musculoskeletal models …


The Effect Of Heat Generation In The Railroad Bearing Thermoplastic Elastomer Suspension Element On The Thermal Behavior Of Railroad Bearing Assembly, Oscar Osvaldo Rodriguez May 2018

The Effect Of Heat Generation In The Railroad Bearing Thermoplastic Elastomer Suspension Element On The Thermal Behavior Of Railroad Bearing Assembly, Oscar Osvaldo Rodriguez

Theses and Dissertations

Understanding the internal heat generation of the railroad bearing elastomer suspension element during operation is essential to predict its dynamic response and structural integrity, as well as to predict the thermal behavior of the complete railroad bearing assembly including the bearing adapter. The latter is essential for sensor selection and placement within the adapter (e.g., typical temperature sensors have operating ranges of up to 125°C or 257°F). The internal heat generation is a function of the loss modulus, strain, and frequency. Based on experimental studies, estimations of internally generated heat within the thermoplastic elastomer pad were obtained. The calculations show …


Modeling And Characterization Of Thermo-Oxidative Behavior Of Bismaleimide Composites, Rafid Muhammad Hussein Jan 2018

Modeling And Characterization Of Thermo-Oxidative Behavior Of Bismaleimide Composites, Rafid Muhammad Hussein

Doctoral Dissertations

"High-temperature polymer matrix composites (HTPMCs) are susceptible to thermo-oxidation, which accelerates the composites' degradation and reduces the service life. Mechanical properties of HTPMCs deteriorate due to coupled thermo-oxidation and cross-linking mechanisms. Bismaleimides (BMIs) are commonly used high-temperature resins for aerospace applications. This work presents the viability of using experimental weight loss to model the spatial distribution of oxidation when the oxidized polymer matrix is not discernible. Three tasks are introduced: (1) Anisotropic oxidation prediction using optimized weight loss behavior of bismaleimide composites, (2) A multi-scale modeling of thermo-oxidative effects on the flexural behavior of cross-ply bismaleimide composites, and (3) Thermo-oxidative …


Comprehensive Finite Element Modeling Of Ti-6al-4v Cellular Solids Fabricated By Electron Beam Melting, Edel Arrieta Jan 2017

Comprehensive Finite Element Modeling Of Ti-6al-4v Cellular Solids Fabricated By Electron Beam Melting, Edel Arrieta

Open Access Theses & Dissertations

Additive manufacturing permits the fabrication of cellular metals which are materials that can be highly customizable and possess multiple and extraordinary properties such as damage tolerance, metamorphic and auxetic behaviors, and high specific stiffness. This makes them the subject of interest for innovative applications. With interest in these materials for energy absorption applications, this work presents the development of nonlinear finite element models in commercial software platforms (MSC Patran/Nastran) that permit the analysis of the deformation mechanisms of these materials under compressive loads. In the development of these models, a detailed multiscale study on the different factors affecting the response …


A 3d Fem Comparative Study On The Impact Response Between Human Head And Nocsae Head Due To Free Fall, Amey S. Badhe Jan 2017

A 3d Fem Comparative Study On The Impact Response Between Human Head And Nocsae Head Due To Free Fall, Amey S. Badhe

Dissertations, Master's Theses and Master's Reports

We all enjoy sports be it watching or playing. Concussion is well known topic when it comes sports related injuries. However, concussion and brain injury is not exclusive to sports and outdoor activities. Sometimes, even the impact due to slip and fall at small heights can cause serious damage to the head and brain. This report studies the response generated in the human head model and the commercially use dummy NOCSAE headform due to drop from height of 2, 3, 4 and 5 feet. Earlier studies have related brain kinetics and head kinematics to concussion and traumatic brain injury (TBI). …


An Investigation Of Composite Failure Analyses And Damage Evolution In Finite Element Models, Ann M. Frappier Dec 2016

An Investigation Of Composite Failure Analyses And Damage Evolution In Finite Element Models, Ann M. Frappier

Open Access Theses

This paper presents a composite conical structure used commonly in flight-qualification testing. This structure’s overall load-displacement behavioral response is characterized. Mixed-mode multidelamination in a layered composite specimen is considered in Abaqus/Explicit through both the Virtual Crack Closure Technique and Cohesive Elements. The Virtual Crack Closure Technique and Cohesive Elements are compared against experimental test results presented in literature. Further, a thorough comparison in which the effects of failure criteria type, through-thickness mesh density, and finite element type on the progressive failure response of this composite assembly is discussed. Lastly, Abaqus/Standard and Helius PFA are compared in order to gain confidence …


Development And Validation Of A Tibiofemoral Joint Finite Element Model And Subsequent Gait Analysis Of Intact Acl And Acl Deficient Individuals, Nicholas Czapla Jun 2015

Development And Validation Of A Tibiofemoral Joint Finite Element Model And Subsequent Gait Analysis Of Intact Acl And Acl Deficient Individuals, Nicholas Czapla

Master's Theses

Osteoarthritis (OA) is a degenerative condition of articular cartilage that affects more than 25 million people in the US. Joint injuries, like anterior cruciate ligament (ACL) tears, can lead to OA due to a change in articular cartilage loading. Gait analysis combined with knee joint finite element modeling (FEM) has been used to predict the articular cartilage loading. To predict the change of articular cartilage loading during gait due to various ACL injuries, a tibiofemoral FEM was developed from magnetic resonance images (MRIs) of a 33 year male, with no prior history of knee injuries. The FEM was validated for …


Investigation Of The Quenching Characteristics Of Steel Components By Static And Dynamic Analyses, Pratik Sarker Dec 2014

Investigation Of The Quenching Characteristics Of Steel Components By Static And Dynamic Analyses, Pratik Sarker

University of New Orleans Theses and Dissertations

Machine components made of steel are subjected to heat treatment processes for improving mechanical properties in order to enhance product life and is usually done by quenching. During quenching, heat is transferred rapidly from the hot metal component to the quenchant and that rapid temperature drop induces phase transformation in the metal component. As a result, quenching generates some residual stresses and deformations in the material. Therefore, to estimate the temperature distribution, residual stress, and deformation computationally; three-dimensional finite element models are developed for two different steel components – a spur gear and a circular tube by a static and …


Computational And Experimental Study Of Degeneration, Damage And Failure In Biological Soft Tissues, Gregory Allen Von Forell Dec 2013

Computational And Experimental Study Of Degeneration, Damage And Failure In Biological Soft Tissues, Gregory Allen Von Forell

Theses and Dissertations

The purpose of this work was to analyze the biomechanics of degeneration, damage, and failure in biological soft tissues both experimentally and computationally to provide insight into tendon or ligament tearing, tendo-achilles lengthening and lumbar spine dysfunction. For soft tissue tearing, experimental studies for calculating fracture toughness were performed and determined that tendons and ligaments are able to completely resist tear propagation. For tendo-achilles lengthening, a damage model was developed to mimic the behavior of the lengthening that occurs as a result of the percutaneous triple hemisection technique. The model provided insight for predicting the amount of lengthening that occurs …


Crack Growth Behavior Under Creep-Fatigue Conditions Using Compact And Double Edge Notch Tension-Compression Specimens, Santosh B. Narasimha Chary Dec 2013

Crack Growth Behavior Under Creep-Fatigue Conditions Using Compact And Double Edge Notch Tension-Compression Specimens, Santosh B. Narasimha Chary

Graduate Theses and Dissertations

The American Society for Testing and Materials (ASTM) has recently developed a new standard for creep-fatigue crack growth testing, E 2760-10, that supports testing compact specimens, C(T), under load controlled conditions. C(T) specimens are commonly used for fatigue and creep-fatigue crack growth testing under constant-load-amplitude conditions. The use of these specimens is limited to positive load ratios. They are also limited in the amount of crack growth data that can be developed at high stress intensity values due to accumulation of plastic and/or creep strains leading to ratcheting in the specimen. Testing under displacement control can potentially address these shortcomings …


Development And Validation Of A Human Knee Joint Finite Element Model For Tissue Stress And Strain Predictions During Exercise, Spencer D. Wangerin Dec 2013

Development And Validation Of A Human Knee Joint Finite Element Model For Tissue Stress And Strain Predictions During Exercise, Spencer D. Wangerin

Master's Theses

Osteoarthritis (OA) is a degenerative condition of cartilage and is the leading cost of disability in the United States. Motion analysis experiments in combination with knee-joint finite element (FE) analysis may be used to identify exercises that maintain knee-joint osteochondral (OC) loading at safe levels for patients at high-risk for knee OA, individuals with modest OC defects, or patients rehabilitating after surgical interventions. Therefore, a detailed total knee-joint FE model was developed by modifying open-source knee-joint geometries in order to predict OC tissue stress and strain during the stance phase of gait. The model was partially validated for predicting the …


Broncoblade: An Open Source Wind Turbine Blade Analysis Tool, Alex R. Quinlan Apr 2013

Broncoblade: An Open Source Wind Turbine Blade Analysis Tool, Alex R. Quinlan

Masters Theses

This thesis reports the development and validation of BroncoBlade, a horizontal axis wind turbine analysis tool. BroncoBlade prepares finite element models and integrates them with an aeroelastic simulator. Analysis results for the SNL100-00 baseline blade are evaluated against reference results published by Sandia National Laboratories. Variations on the SNL100-00 blade incorporating carbon fiber are compared to the baseline blade.


Biomechanical Factors Influencing Treatment Of Developmental Dysplasia Of The Hip (Ddh) With The Pavlik Harness, Orlando Ardila Jan 2013

Biomechanical Factors Influencing Treatment Of Developmental Dysplasia Of The Hip (Ddh) With The Pavlik Harness, Orlando Ardila

Electronic Theses and Dissertations

Biomechanical factors influencing the reduction of dislocated hips with the Pavlik harness in patients of Developmental Dysplasia of the Hip (DDH) were studied using a simplified three-dimensional computer model simulating hip reduction dynamics in (1) subluxated, and (2) fully dislocated hip joints. The CT-scans of a 6 month-old female infant were used to measure the geometrical features of the hip joint including acetabular and femoral head diameter, acetabular depth, and geometry of the acetabular labrum, using the medical segmentation software Mimics. The lower extremity was modeled by three segments: thigh, leg, and foot. The mass and the location of the …


Numerical Evaluation And Analysis Of The Adhesion Phenomena In Thermal Barrier Coating Systems Through Bio-Mimicking Plasma Process, Naser Imran Hossain Jan 2013

Numerical Evaluation And Analysis Of The Adhesion Phenomena In Thermal Barrier Coating Systems Through Bio-Mimicking Plasma Process, Naser Imran Hossain

LSU Master's Theses

Thermal Barrier Coatings or TBCs when abbreviated are an imperative part of the thermal protection system of expensive equipment and machinery in the automobile and aeronautics industry. They provide protection to expensive alloy materials upto a temperature of 2700° C without expensive metallurgical additions. Unfortunately, the problem of coating adhesion has plagued the TBC field for years, leading to catastrophic failures in critical TBC systems. Efforts to chemically improve bond strength has not been entirely successful, so the only other efficient way to do this would be some kind of mechanical interlocking that occurs at micro/nano scales. This research work …


Vibration And Acoustic Performance Of In-Plane Honeycomb Sandwich Panels, Xiao Gong Aug 2012

Vibration And Acoustic Performance Of In-Plane Honeycomb Sandwich Panels, Xiao Gong

All Theses

Sandwich panel structures constructed with cellular honeycomb cores allow for control of acoustic performance due to their ability to optimize effective orthotropic material properties with changes in cell geometry. By modification of topology and geometric parameters of a unit cell, desirable effective properties can be obtained and used to design lightweight structures with reduced vibration and increased sound transmission loss properties. Thus investigating the relation between the geometric configuration of the honeycomb core and vibration and acoustic behavior is important to optimize design of sandwich panels.
In this work, a finite element model is developed in MATLAB to evaluate the …


A Study Of A Novel Modular Variable Geometry Frame Arranged As A Robotic Surface, Christopher James Salisbury Dec 2011

A Study Of A Novel Modular Variable Geometry Frame Arranged As A Robotic Surface, Christopher James Salisbury

UNLV Theses, Dissertations, Professional Papers, and Capstones

The novel concept of a "variable geometry frame" is introduced and explored through a three-dimensional robotic surface which is devised and implemented using triangular modules. The link design is optimized using surplus motor dimensions as firm constraints, and round numbers for further arbitrary constraints. Each module is connected by a passive six-bar mechanism that mimics the constraints of a spherical joint at each triangle intersection. A three dimensional inkjet printer is used to create a six-module prototype designed around surplus stepper motors powered by an old computer power supply as a proof-of-concept example.

The finite element method is applied to …


Finite Element Reconstruction Of Real World Aortic Injury In Near-Side Lateral Automotive Crashes With Conceptual Countermeasures, Aditya Neelakanta Belwadi Jan 2011

Finite Element Reconstruction Of Real World Aortic Injury In Near-Side Lateral Automotive Crashes With Conceptual Countermeasures, Aditya Neelakanta Belwadi

Wayne State University Dissertations

Traumatic rupture of the aorta (TRA) remains the second most common cause of death associated with motor vehicle crashes after brain injury. On an average, nearly 8,000 people die annually in the United States due to blunt injury to the aorta. It is observed that more than 80% of occupants who suffer an aortic injury die at the scene due to exsanguination into the chest. With the advent of more accurate and established human body finite element (FE) models, FE crash reconstruction methods may become a valuable tool when assessing crash scenarios and occupant injury mechanisms.

The current study is …


All Hexahedral Meshing Of Multiple Source, Multiple Target, Multiple Axis Geometries Via Automatic Grafting And Sweeping, Matthew N. Earp Mar 2005

All Hexahedral Meshing Of Multiple Source, Multiple Target, Multiple Axis Geometries Via Automatic Grafting And Sweeping, Matthew N. Earp

Theses and Dissertations

The development of algorithms for the automatic creation of finite element meshes composed entirely of hexahedra (all-hex) is an active area of research. All-hex meshes are desirable for their characteristic of high accuracy with a low node count. Sweeping is one of the most widely used algorithms for generating all-hex meshes. A limitation of sweeping, however, is that it can currently be applied only to prismatic or extruded geometry types. This thesis develops a method to combine sweeping with another algorithm known as "Grafting". Grafting adjusts the mesh on one volume to conform to a second volume. In this manner …


Vibration Analysis Of Carbon Nanotube Using Continuum Model And Finite Element Model, Hari Subramaniam Jan 2005

Vibration Analysis Of Carbon Nanotube Using Continuum Model And Finite Element Model, Hari Subramaniam

Electronic Theses and Dissertations

The main objective of the thesis is to propose the methods of determining vibration behavior of carbon nanotubes (CNTs) using continuum models and finite element models. Secondary objective is to find the effect of van der Waals force on vibration of multiwalled carbon nanotubes . The study of vibration behavior of CNTs is important because of their potential engineering applications such as nano-mechanical resonators and tips of scanning probe instruments where they are subjected to mechanical vibrations. Continuum modeling is based on an elastic beam model. The interlayer van der Waals interactions are represented by Lennard-Jones potential. In finite element …