Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Mechanical Engineering

Wideband Fluorescence-Based Thermometry By Neural Network Recognition: Photothermal Application With 10 Ns Time Resolution, Liwang Liu, Kuo Zhong, Troy Munro, Salvador Alvarado, Renaud Cote, Sebastiaan Creten, Eduard Fron, Heng Ban, Mark Van Der Auweraer, N. B. Roozen, Osamu Matsuda, Christ Glorieux Nov 2015

Wideband Fluorescence-Based Thermometry By Neural Network Recognition: Photothermal Application With 10 Ns Time Resolution, Liwang Liu, Kuo Zhong, Troy Munro, Salvador Alvarado, Renaud Cote, Sebastiaan Creten, Eduard Fron, Heng Ban, Mark Van Der Auweraer, N. B. Roozen, Osamu Matsuda, Christ Glorieux

Mechanical and Aerospace Engineering Faculty Publications

Neural network recognition of features of the fluorescence spectrum of a thermosensitive probe is exploited in order to achieve fluorescence-based thermometry with an accuracy of 200 mK with 100 MHz bandwidth, and with high robustness against fluctuations of the probe laser intensity used. The concept is implemented on a rhodamine B dyed mixture of copper chloride and glycerol, and the temperature dependent fluorescence is investigated in the temperature range between 234 K and 311 K. The spatial dependence of the calibrated amplitude and phase of photothermally induced temperature oscillations along the axis of the excitation laser are determined at different …


Mhz-Rate Nitric Oxide Planar Laser-Induced Fluorescence Imaging In A Mach 10 Hypersonic Wind Tunnel, Naibo Jiang, Matthew Webster, Walter R. Lempert, Joseph D. Miller, Terrence R. Meyer, Christopher B. Ivey, Paul M. Danehy Nov 2015

Mhz-Rate Nitric Oxide Planar Laser-Induced Fluorescence Imaging In A Mach 10 Hypersonic Wind Tunnel, Naibo Jiang, Matthew Webster, Walter R. Lempert, Joseph D. Miller, Terrence R. Meyer, Christopher B. Ivey, Paul M. Danehy

Terrence R Meyer

Nitric oxide planar laser-induced fluorescence (NO PLIF) imaging at repetition rates as high as 1 MHz is demonstrated in the NASA Langley 31 in. Mach 10 hypersonic wind tunnel. Approximately 200 timecorrelated image sequences of between 10 and 20 individual frames were obtained over eight days of wind tunnel testing spanning two entries in March and September of 2009. The image sequences presented were obtained from the boundary layer of a 20° flat plate model, in which transition was induced using a variety of different shaped protuberances, including a cylinder and a triangle. The high-speed image sequences captured a variety …


Quantitative Time-Averaged Gas And Liquid Distributions Using X-Ray Fluorescence And Radiography In Atomizing Sprays, Christopher D. Radke, J. Patrick Mcmanamen, Alan L. Kastengren, Benjamin R. Halls, Terrence R. Meyer Nov 2015

Quantitative Time-Averaged Gas And Liquid Distributions Using X-Ray Fluorescence And Radiography In Atomizing Sprays, Christopher D. Radke, J. Patrick Mcmanamen, Alan L. Kastengren, Benjamin R. Halls, Terrence R. Meyer

Terrence R Meyer

A method for quantitative measurements of gas and liquid distributions is demonstrated using simultaneous x-ray fluorescence and radiography of both phases in an atomizing coaxial spray. Synchrotron radiation at 10.1 keV from the Advanced Photon Source at Argonne National Laboratory is used for x-ray fluorescence of argon gas and two tracer elements seeded into the liquid stream. Simultaneous time-resolved x-ray radiography combined with timeaveraged dual-tracer fluorescence measurements enabled corrections for reabsorption of x-ray fluorescence photons for accurate, line-of-sight averaged measurements of the distribution of the gas and liquid phases originating from the atomizing nozzle.


Validation Of The Afit Small Scale Combustion Facility And Oh Laser-Induced Fluorescence Of An Atmospheric Laminar Premiext Ed Flame, Stephen J. Koether Sep 2007

Validation Of The Afit Small Scale Combustion Facility And Oh Laser-Induced Fluorescence Of An Atmospheric Laminar Premiext Ed Flame, Stephen J. Koether

Theses and Dissertations

Construction in the AFIT combustion facility is complete and the objective of this report is to explain the steps taken to make the laboratory operational. The infinite radius Ultra-Compact Combustor (UCC) sectional model has been delivered and is fully installed with all fuel, air and instrument lines. Every major system in the lab has been tested and is functioning properly. Laboratory operating procedure has been established to ensure both safety and continuity in experimental results. Finally, the lab has been certified through official safety channels and combustion experiments are underway. The unique capability of the AFIT combustion laboratory is the …


Experimental Verification Of Near-Wall Hindered Diffusion Theory For The Brownian Motion Of Nanoparticles Using Evanescent Wave Microscopy, Kenneth D. Kihm, Arindam Banerjee Jan 2005

Experimental Verification Of Near-Wall Hindered Diffusion Theory For The Brownian Motion Of Nanoparticles Using Evanescent Wave Microscopy, Kenneth D. Kihm, Arindam Banerjee

Mechanical and Aerospace Engineering Faculty Research & Creative Works

A total internal reflection fluorescence microscopy technique coupled with three-dimensional tracking of nanoparticles is used to experimentally verify the theory on near-wall hindered Brownian motion [Goldman et al., Chem. Eng. Sci. 22, 637 (1967); Brenner, Chem. Eng. Sci. 16, 242 (1967)] very close to the solid surface (within ~1 µm). The measured mean square displacements (MSDs) in the lateral x-y directions show good agreement with the theory for all tested nanoparticles of radii 50, 100, 250, and 500 nm. However, the measured MSDs in the z direction deviate substantially from the theory particularly for the case of smaller particles of …