Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Aerospace Engineering

PDF

Institution
Keyword
Publication Year
Publication
Publication Type

Articles 1 - 30 of 1300

Full-Text Articles in Mechanical Engineering

Near-Field Pressure Signature Splicing For Low-Fidelity Design Space Exploration Of Supersonic Aircraft, Christian R. Bolander, Douglas F. Hunsaker Jan 2020

Near-Field Pressure Signature Splicing For Low-Fidelity Design Space Exploration Of Supersonic Aircraft, Christian R. Bolander, Douglas F. Hunsaker

Mechanical and Aerospace Engineering Student Publications and Presentations

As interest in supersonic overland flight intensifies, new ways to meet government restrictions on sonic boom loudness must be implemented. Low-fidelity aerodynamic tools, such as PANAIR, can estimate the near-field pressure signature that ultimately determines the loudness of the sonic boom at the ground. These tools can greatly benefit the exploration of large design spaces due to their computational efficiency. One of the limitations of low-fidelity tools is the accuracy of the solution produced, which is dependent on the fundamental physical assumptions made in the development of the governing equations. If flow patterns are produced that severely violate these fundamental ...


An Exact Formulation For Exponential-Logarithmic Transformation Stretches In A Multiphase Phase Field Approach To Martensitic Transformations, Anup Basak, Valery I. Levitas Jan 2020

An Exact Formulation For Exponential-Logarithmic Transformation Stretches In A Multiphase Phase Field Approach To Martensitic Transformations, Anup Basak, Valery I. Levitas

Aerospace Engineering Publications

A general theoretical and computational procedure for dealing with an exponential-logarithmic kinematic model for transformation stretch tensor in a multiphase phase field approach to stress- and temperature- induced martensitic transformations with N martensitic variants is developed for transformations between all possible crystal lattices. This kinematic model, where the natural logarithm of transformation stretch tensor is a linear combination of natural logarithm of the Bain tensors, yields isochoric variant-variant transformations for the entire transformation path. Such a condition is plausible and cannot be satisfied by the widely used kinematic model where the transformation stretch tensor is linear in Bain tensors. Earlier ...


Multiscale Modeling Of Fracture In Quasi-Brittle Materials Using Bifurcation Analysis And Element Elimination Method, Keyvan Zare Rami Dec 2019

Multiscale Modeling Of Fracture In Quasi-Brittle Materials Using Bifurcation Analysis And Element Elimination Method, Keyvan Zare Rami

Civil and Environmental Engineering Theses, Dissertations, and Student Research

Analyzing the fracture of heterogeneous materials is a complex problem, due to the fact that the mechanical behavior of a heterogeneous material is strongly dependent on a variety of factors, such as its microstructure, the properties of each constituent, and interactions between them. Therefore, these factors must be effectively taken into account for accurate analysis, for which the multiscale method has been widely used. In this scheme, the computational homogenization method is used to obtain the effective macroscopic properties of a heterogeneous material based on the response of a Representative Volume Element (RVE). The growth of damage in an RVE ...


Axial Compressor Based On Plastic Additive Manufacturing, Chris Phu Dec 2019

Axial Compressor Based On Plastic Additive Manufacturing, Chris Phu

Mechanical Engineering Undergraduate Honors Theses

Turbomolecular pumps designed to function in very low pressures tend to be too prohibitively expensive for student researchers. On the other hand, while conventional pumps are affordable, they can’t function in extreme low pressures. An additively manufactured axial compressor however is inexpensive to manufacturer and only needs to be build up enough pressure for a conventional pump to function. After many design iterations, a final iteration that is near vacuum chamber ready has been 3D printed and tested for spin functionally. The designed axial compressor is easy to assemble and very modular. Conclusions from each of the design iterations ...


Damage Resistance And Tolerance Of 3d Woven Composites, Justin T. Mcdermott Dec 2019

Damage Resistance And Tolerance Of 3d Woven Composites, Justin T. Mcdermott

Electronic Theses and Dissertations

Composite materials have been adopted into primary aircraft structures by virtue of their great strength-to-weight and stiffness-to-weight ratios, fatigue insensitivity, and corrosion resistance. These characteristics are leveraged by aircraft designers to deliver improved fuel effciency and reduced scheduled maintenance burdens for their customers. These benefits have been impressively realized in the Boeing 787 and Airbus A350 XWB, with airframes utilizing about 50% composites by weight. Tempering these successes, however, are the inherent vulnerabilities of carbon-fiber reinforced composites. When compared to conventional metallic structure, composite laminates are more sensitive to stress concentrations at mechanical fastenings and damage due to low-velocity impact ...


Design And Kinematic Analysis Of A Semi-Compliant Swashplate Mechanism, Niko Giannakakos Nov 2019

Design And Kinematic Analysis Of A Semi-Compliant Swashplate Mechanism, Niko Giannakakos

Georgia Undergraduate Research Conference (GURC)

Compliant mechanisms generate motion through the deformation or deflection of its flexible members rather than the revolute joints utilized in traditional rigid link mechanisms. If a compliant mechanism is designed as a single piece without the need of joints to create relative motion, then it is a monolithic system. If at least one part of the mechanism is flexible and assembled with rigid parts and joints, then it is a partially compliant mechanism. The superiorities of compliant mechanisms over rigid mechanisms are the reduced number of parts required to build the system, simple design, no backlash, no lubrication, less friction ...


Influence Of Flow Rate, Nozzle Speed, Pitch And The Number Of Passes On The Thickness Of S1805 Photoresist In Suss Microtec As8 Spray Coater, Rohan Sanghvi, Gyuseok Kim Oct 2019

Influence Of Flow Rate, Nozzle Speed, Pitch And The Number Of Passes On The Thickness Of S1805 Photoresist In Suss Microtec As8 Spray Coater, Rohan Sanghvi, Gyuseok Kim

Tool Data

S1805 positive photoresist has been deposited on single crystalline Si wafers using a Suss MicroTec Alta Spray. The influence of flow rate, nozzle speed, pitch and number of passes on the thickness of the photoresist was studied. Results show that the thickness of S1805 is linearly proportional to the flow rate and number of passes, and inversely proportional to the nozzle speed and pitch.


Validation Of Rhocentralfoam For Engineering Applications Of Under-Expanded Impinging Free Jets, Peter Nielsen Oct 2019

Validation Of Rhocentralfoam For Engineering Applications Of Under-Expanded Impinging Free Jets, Peter Nielsen

Electronic Thesis and Dissertation Repository

A numerical validation study of under-expanded impinging jet is conducted using OpenFOAM, an open-source computational fluid dynamics (CFD) library. RhoCentralFoam, a density based, compressible flow solver with a two-equation shear stress transport (SST) turbulence model is used on an axisymmetric model to reduce the computation cost. Major features of the flow were compared to an experimental study by Henderson et al., with a nozzle pressure ratio (NPR) of 4.0 and nozzle to plate spacing between 1.65-4.16. Of the features measured, the Mach diamond spacing, super-sonic core, and shear layer are all accurately predicted, while the recirculation bubble ...


Tensorial Stress−Strain Fields And Large Elastoplasticity As Well As Friction In Diamond Anvil Cell Up To 400 Gpa, Valery I. Levitas, Mehdi Kamrani, Biao Feng Oct 2019

Tensorial Stress−Strain Fields And Large Elastoplasticity As Well As Friction In Diamond Anvil Cell Up To 400 Gpa, Valery I. Levitas, Mehdi Kamrani, Biao Feng

Aerospace Engineering Publications

Various phenomena (fracture, phase transformations, and chemical reactions) studied under extreme pressures in diamond anvil cell are strongly affected by fields of all components of stress and plastic strain tensors. However, they could not be measured. Here, we suggest a coupled experimental−theoretical−computational approach that allowed us (using published experimental data) to refine, calibrate, and verify models for elastoplastic behavior and contact friction for tungsten (W) and diamond up to 400 GPa and reconstruct fields of all components of stress and large plastic strain tensors in W and diamond. Despite the generally accepted strain-induced anisotropy, strain hardening, and path-dependent ...


Extension Of A Penalty Method For Numerically Solving Constrained Multibody Dynamic Problems, Troy Newhart Oct 2019

Extension Of A Penalty Method For Numerically Solving Constrained Multibody Dynamic Problems, Troy Newhart

Mechanical & Aerospace Engineering Theses & Dissertations

Numerical analysis of constrained static and multibody dynamic systems has become an integral part of engineering analysis with the continued improvements in technology and software availability. Many methods currently exist for numerically solving constrained static and dynamic systems. The applicability of a penalty method for constrained static solutions is observed in many academic texts and papers. The appeal for using a penalty method in statics pertains to its ease of implementation, computational suitability, and accuracy. This thesis extends a static penalty method for use with constrained multibody dynamics to observe if the penalty method’s benefits are similar for a ...


Computational Finite Element Analysis Of Adaptive Gas Turbine Stator-Rotor Flow Interactions For Future Vertical Lift Propulsion, Nikita Kozak, Luis Bravo, Muthuvel Murugan, Anindya Ghoshal, Yu Yu Khine, Yuri Bazilevs, Ming-Chen Hsu Aug 2019

Computational Finite Element Analysis Of Adaptive Gas Turbine Stator-Rotor Flow Interactions For Future Vertical Lift Propulsion, Nikita Kozak, Luis Bravo, Muthuvel Murugan, Anindya Ghoshal, Yu Yu Khine, Yuri Bazilevs, Ming-Chen Hsu

Mechanical Engineering Conference Presentations, Papers, and Proceedings

The objective of this work is to computationally investigate the impact of an incident-tolerant rotor blade concept on gas-turbine engine performance under off-design conditions. Currently, gas-turbine engines are designed to operate at a single condition with nearly fixed rotor speeds. Operation at off-design conditions, such as during hover flight or during takeoff, causes the turbine blade flow to excessively separate introducing performance degradations, excessive noise, and critical loss of operability. To address these issues, the benefits of using an incidence-tolerant rotor blade concept is explored based on a novel concept that articulates the rotating turbine blade synchronously with the stator ...


How Vision Governs The Collective Behaviour Of Dense Cycling Pelotons, J. Belden, Mohammad M. Mansoor, A. Hellum, S. R. Rahman, A. Meyer, C. Pease, J. Pacheco, S. Koziol, Tadd T. Truscott Jul 2019

How Vision Governs The Collective Behaviour Of Dense Cycling Pelotons, J. Belden, Mohammad M. Mansoor, A. Hellum, S. R. Rahman, A. Meyer, C. Pease, J. Pacheco, S. Koziol, Tadd T. Truscott

Mechanical and Aerospace Engineering Faculty Publications

In densely packed groups demonstrating collective behaviour, such as bird flocks, fish schools or packs of bicycle racers (cycling pelotons), information propagates over a network, with individuals sensing and reacting to stimuli over relatively short space and time scales. What remains elusive is a robust, mechanistic understanding of how sensory system properties affect interactions, information propagation and emergent behaviour. Here, we show through direct observation how the spatio-temporal limits of the human visual sensory system govern local interactions and set the network structure in large, dense collections of cyclists. We found that cyclists align in patterns within a ± 30° arc ...


Investigation Of Fundamental Principles Of Rigid Body Impact Mechanics, Khalid Alluhydan Jul 2019

Investigation Of Fundamental Principles Of Rigid Body Impact Mechanics, Khalid Alluhydan

Mechanical Engineering Research Theses and Dissertations

In impact mechanics, the collision between two or more bodies is a common, yet a very challenging problem. Producing analytical solutions that can predict the post-collision motion of the colliding bodies require consistent modeling of the dynamics of the colliding bodies. This dissertation presents a new method for solving the two and multibody impact problems that can be used to predict the post-collision motion of the colliding bodies. Also, we solve the rigid body collision problem of planar kinematic chains with multiple contacts with external surfaces.

In the first part of this dissertation, we study planar collisions of Balls and ...


A Multi-Fidelity Prediction Of Aerodynamic And Sonic Boom Characteristics Of The Jaxa Wing Body, Forrest L. Carpenter, Paul G. A. Cizmas, Christian R. Bolander, Ted N. Giblette, Doug F. Hunsaker Jun 2019

A Multi-Fidelity Prediction Of Aerodynamic And Sonic Boom Characteristics Of The Jaxa Wing Body, Forrest L. Carpenter, Paul G. A. Cizmas, Christian R. Bolander, Ted N. Giblette, Doug F. Hunsaker

Mechanical and Aerospace Engineering Student Publications and Presentations

This paper presents a detailed comparison between the linear panel solver PANAIR A502 and the in-house Navier–Stokes solver UNS3D for a supersonic low-boom geometry. The high-fidelity flow solver was used to predict both the inviscid and laminar flow about the aircraft geometry. The JAXA wing body was selected as the supersonic low-boom geometry for this study. A comparison of the undertrack near-field pressure signatures showed good agreement between the three levels of model fidelity along the first 0.8L of the signature. Large oscillations in the PANAIR results were observed. The PANAIR discrepancies were traced back to violations ...


Structural Health Monitoring Of Composite Parts: A Review, Jacob Pessin Jun 2019

Structural Health Monitoring Of Composite Parts: A Review, Jacob Pessin

Honors Theses

Structural health monitoring has the potential to allow composite structures to be more reliable and safer, then by using more traditional damage assessment techniques. Structural health monitoring (SHM) utilizes individual sensor units that are placed throughout the load bearing sections of a structure and gather data that is used for stress analysis and damage detection. Statistical time based algorithms are used to analyze collected data and determine both damage size and probable location from within the structure. While traditional calculations and life span analysis can be done for structures made of isotropic materials such as steel or other metals, composites ...


Modifying Casting Parameters To Improve The High Temperature Ductility Of Investment Cast Nickel-Based Superalloy Pwa 1455, Lars Alexander Hedin, Cole Magnum Introligator Jun 2019

Modifying Casting Parameters To Improve The High Temperature Ductility Of Investment Cast Nickel-Based Superalloy Pwa 1455, Lars Alexander Hedin, Cole Magnum Introligator

Materials Engineering

PCC Structurals, an industry leader in superalloy investment castings, has observed inconsistencies in the stress rupture performance of polycrystalline nickel-based superalloy PWA 1455. PCC has changed their casting parameters to reduce the thermal gradient during cooling but have been unable to correlate these changes with an increase in stress rupture elongation. Metallographic examination of past samples indicated microstructures composed of non- equiaxed dendritic grains with mean diameter of .021 inches along the test axis. A similar study on polycrystalline superalloys has indicated that excessive superheat temperatures above the liquidus can result in large grains identical to those observed, limiting the ...


Redesign Of Cubesat For Beam Charging, Kuba Preis Jun 2019

Redesign Of Cubesat For Beam Charging, Kuba Preis

Industrial and Manufacturing Engineering

This paper is intended to be a study in the applications of the design freedom granted by additive manufacture in the design of a 1U CubeSat frame. The main loads experienced by a CubeSat are structural (during launch) and thermal (solar radiation). Beam charging is an emerging technology which involves charging a CubeSat using a laser beam. In this paper, a CubeSat frame was redesigned to account for the structural loads induced during launch and the thermal loads induced when beam charging. The thermal, weight, design, and structural requirements for a new CubeSat design were derived. The 1U CubeSat frame ...


Investigation Of Nondestructive Testing Methods For Friction Stir Welding, Hossein Taheri, Margaret Kilpatrick, Matthew Norvalls, Warren Harper, Lucas Koester, Timothy Bigelow, Leonard J. Bond May 2019

Investigation Of Nondestructive Testing Methods For Friction Stir Welding, Hossein Taheri, Margaret Kilpatrick, Matthew Norvalls, Warren Harper, Lucas Koester, Timothy Bigelow, Leonard J. Bond

Electrical and Computer Engineering Publications

Friction stir welding is a method of materials processing that enables the joining of similar and dissimilar materials. The process, as originally designed by The Welding Institute (TWI), provides a unique approach to manufacturing—where materials can be joined in many designs and still retain mechanical properties that are similar to, or greater than, other forms of welding. This process is not free of defects that can alter, limit, and occasionally render the resulting weld unusable. Most common amongst these defects are kissing bonds, wormholes and cracks that are often hidden from visual inspection. To identify these defects, various nondestructive ...


Computation Of Flow Fields Due To Single- And Twin-Jet Impingement, Xiang Zhang May 2019

Computation Of Flow Fields Due To Single- And Twin-Jet Impingement, Xiang Zhang

Engineering and Applied Science Theses & Dissertations

The thesis consists of two parts. The first part focuses on numerical simulations and their comparison with experimental data for single-jet impingement on ground. Angles between the axisymmetric jet and impingement surface considered are 15, 30 and 90 degree. It is shown that both the k-epsilon and Wray-Agarwal (WA) model can predict the flow fields in good agreement with the experimental results. The second part extends the first part to twin-jet normal impingement on the ground. It focuses on numerical simulation of fountains formed by the twin-jet impingement. The fountains can be normal straight upward when the two jets are ...


Thermal And Orbital Analysis Of Darkness Cubesat, Katie Dickey May 2019

Thermal And Orbital Analysis Of Darkness Cubesat, Katie Dickey

Honors Program Projects

Fermi National Accelerator Laboratory is sending a 3U CubeSat into LEO to search for a 3.5 keV photon corresponding to the decay of a theorized dark matter particle called the sterile neutrino. The CubeSat will encounter environmental variations while in orbit that can be computed through an orbital analysis using System’s Tool Kit. In order to minimize thermal noise readout, improve optical resolution, and increase bandwidth, the sensors must be kept below 170K while taking data. This temperature is difficult to achieve due to radiation from the Sun and the Earth’s albedo radiation. Through the thermal analysis ...


Subscale Mars Colonization Mission, Cameron J. Lamack, James Lumsden, Sean Nevin, Donner Schoeffler, Riley Evers, Alexandra Poulakos, Skyler Tan, Anthony Keba, Siraj Zaman, Ali Altamimi, Anthony Modica May 2019

Subscale Mars Colonization Mission, Cameron J. Lamack, James Lumsden, Sean Nevin, Donner Schoeffler, Riley Evers, Alexandra Poulakos, Skyler Tan, Anthony Keba, Siraj Zaman, Ali Altamimi, Anthony Modica

Honors Thesis

The team will compete in the SAE (Society of Automotive Engineers) Aero Design West Advanced Class competition, held 5-7th April 2019 in Van Nuys, California. The team will work to develop, through research, design, optimizational trade studies, and manufacturing, a system for the deployment of parasitic aircraft, as well as payload. The system will consist of a primary fixed-wing aircraft, parasitic autonomous gliders, a real-time altitude data acquisition system, as well as both static and releasable payload. The deployable gliders must navigate autonomously to a targeting area on the ground without any on-board propulsion. The releasable payload, which will consist ...


Stability Analysis Of A More General Class Of Systems With Delay-Dependent Coefficients, Chi Jin, Keqin Gu, Islam Boussaada, Silviu-Iulian Niculescu May 2019

Stability Analysis Of A More General Class Of Systems With Delay-Dependent Coefficients, Chi Jin, Keqin Gu, Islam Boussaada, Silviu-Iulian Niculescu

SIUE Faculty Research, Scholarship, and Creative Activity

This paper presents a systematic method to analyse the stability of systems with single delay in which the coefficient polynomials of the characteristic equation depend on the delay. Such systems often arise in, for example, life science and engineering systems. A method to analyze such systems was presented by Beretta and Kuang in a 2002 paper, but with some very restrictive assumptions. This work extends their results to the general case with the exception of some degenerate cases. It is found that a much richer behavior is possible when the restrictive assumptions are removed. The interval of interest for the ...


Energy Analysis And Orbit Simulation Of Actuating Cubesat Solar Arrays, Justin T. Ehren May 2019

Energy Analysis And Orbit Simulation Of Actuating Cubesat Solar Arrays, Justin T. Ehren

Honors Theses

CubeSats are used in space research to explore new technologies and detect data to gain a better understanding of various areas of research and subjects affecting human life. CubeSats rely on a solar array to generate energy from the sun and perform their various functions in space. This research studies the energy capturing potential of various solar array configurations and positioning devices for CubeSats. The location and orientation of a CubeSat is simulated with MATLAB for both geo-synchronous and sunsynchronous orbits. Two degree-of-freedom (DoF) positioning devices are sufficient to continuously adjust the photovoltaic array to face towards the sun. Lower ...


Development Of A One-Equation Turbulence Model Based On K-Ε Closure And Its Extension For Computing Transitional Flows By Including An Intermittency Transport Equation, Cheng Peng May 2019

Development Of A One-Equation Turbulence Model Based On K-Ε Closure And Its Extension For Computing Transitional Flows By Including An Intermittency Transport Equation, Cheng Peng

Engineering and Applied Science Theses & Dissertations

No abstract provided.


Unmanned Aerial Power Line Surveillance Drone, Brock Arp, Wade Vine, Cameron Whigham, Lorenzo Stewart Apr 2019

Unmanned Aerial Power Line Surveillance Drone, Brock Arp, Wade Vine, Cameron Whigham, Lorenzo Stewart

Senior Design Project For Engineers

The purpose of our project is to provide power line workers and linemen with a safe way to inspect the power lines. Our Aircraft is an UAV that is capable of surveying 200 linear miles in a normal working shift. The aircraft will be launched/landed and operated from an F-150 pickup truck with a facilitated launch mechanism attached. The aircraft must maintain an altitude of 150-400 ft. It will be recovered via net that will extend from the truck as the plane comes in for a landing, This will eliminate the need for landing gear. The goal for this ...


Thermal Management Design Tool System For Cubesat Applications, Siakrishna Reddy Kanumuru Apr 2019

Thermal Management Design Tool System For Cubesat Applications, Siakrishna Reddy Kanumuru

Morehead State Theses and Dissertations

A thesis presented to the faculty of the College of Science at Morehead State University in partial fulfillment of the requirements for the Degree of Master of Science by Saikrishna Reddy Kanumuru on April 26, 2019.


Water Walking As A New Mode Of Free Surface Skipping, Randy C. Hurd, Jesse Belden, Allan F. Bower, Sean Holekamp, Michael A. Jandron, Tadd T. Truscott Apr 2019

Water Walking As A New Mode Of Free Surface Skipping, Randy C. Hurd, Jesse Belden, Allan F. Bower, Sean Holekamp, Michael A. Jandron, Tadd T. Truscott

Mechanical and Aerospace Engineering Faculty Publications

Deformable elastomeric spheres are evaluated experimentally as they skip multiple times over a lake surface. Some spheres are embedded with small inertial measurement units to measure the acceleration experienced during water surface impact. A model for multiple impact events shows good agreement between measured acceleration, number of skipping events and distanced traveled. The experiment reveals a new mode of skipping, “water walking”, which is observed for relatively soft spheres impacting at low impact angles. The mode occurs when the sphere gains significant angular velocity over the first several impacts, causing the sphere to maintain a deformed, oblong shape. The behavior ...


Algorithm For Geodetic Positioning Based On Angle-Of-Arrival Of Automatic Dependent Surveillance-Broadcasts, Richard Allen Gross Apr 2019

Algorithm For Geodetic Positioning Based On Angle-Of-Arrival Of Automatic Dependent Surveillance-Broadcasts, Richard Allen Gross

Masters Theses

This paper develops a non-precision, three-dimensional, geodetic positioning algorithm for airborne vehicles. The algorithm leverages the proliferation of Automatic Dependent Surveillance – Broadcast (ADS-B) equipped aircraft, utilizing them as airborne navigation aids to generate an RF Angle-of-Arrival (AOA) and Angle-of-Elevation (AOE) based geodetic position. The resulting geodetic position can serve as a redundant navigation system for use during locally limited Global Navigation Satellite System (GNSS) availability, be used to validate on-board satellite navigation systems in an effort to detect local spoofing attempts, and be used to validate ADS-B position reports.

The navigation algorithm is an implementation of an Extended Kalman Filter ...


Characterization And Optimization Of A Propeller Test Stand, Colin Bruce Leighton Benjamin Apr 2019

Characterization And Optimization Of A Propeller Test Stand, Colin Bruce Leighton Benjamin

Mechanical & Aerospace Engineering Theses & Dissertations

In recent history, there has been a rapid rise in the use of drones, and they are expanding in popularity each year. The widespread use and future capabilities of these unmanned aerial vehicles (UAVs) will call for increased study and classification of propellers to maximize their performance. As a result, it is necessary to have continuity in the development, maximization, and optimization of propeller test stand’s capability to collect accurate and precise measurements. It is of significant advantage to have the capability of accurately characterizing a propeller based on its thrust and torque. In this study, a propeller test ...


Design And Manufacture Of An Inertial Cascade Impactor For Industrial Hygiene Purposes, Hector Joel Gortaire Apr 2019

Design And Manufacture Of An Inertial Cascade Impactor For Industrial Hygiene Purposes, Hector Joel Gortaire

Mechanical & Aerospace Engineering Theses & Dissertations

Inertial cascade impactors are devices commonly used for industrial hygiene and pharmaceutical studies. Their main purpose is to separate particulate matter suspended in aerosols according to their sizes, which can vary from over 10 µm to 0.5 µm. Their versatility and ease of operation make them suitable for on-site sampling; however, designing them requires a careful consideration of the different geometric parameters that characterize them.

In this thesis, a 5-stage inertial cascade impactor was designed, modelled, constructed, and tested. The main design parameter was the volumetric flow rate, 40 l/min, which was provided by a vacuum pump. By ...