Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 18 of 18

Full-Text Articles in Mechanical Engineering

Enhancements To Nuclear Thermal Propulsion Rockets, Kimberly Gonzalez Aug 2022

Enhancements To Nuclear Thermal Propulsion Rockets, Kimberly Gonzalez

UNLV Theses, Dissertations, Professional Papers, and Capstones

Nuclear thermal rocket propulsion has been proposed as a highly efficient technology for space vehicles traveling from earth orbit to the moon, Mars, and other locations in the solar system. With twice the performance of a chemical rocket, nuclear thermal propulsion (NTP) uses the thrust produced by heating hydrogen gas within a thermal nuclear reactor where the exhaust is then passed through a de Laval nozzle to produce supersonic flow. NTP engines were the subject ofthe NERVA experiments at the Nevada Test Site in the 1970’s, and they produced a specific impulse of up to 900 seconds which is almost …


Carbon Fiber Coil Spring Characterization And Manufacturing, Cooper Madrazo May 2022

Carbon Fiber Coil Spring Characterization And Manufacturing, Cooper Madrazo

UNLV Theses, Dissertations, Professional Papers, and Capstones

Helical coil springs are used in many mechanical design applications including industrial machines, devices, and vehicle suspension systems. It is desirable to minimize the weight of vehicle suspension systems as this can improve performance and handling. Most vehicle suspension coil springs are made from solid steel alloys or other metallic materials. Significant weight savings could be achieved if the metallic material were replaced by high performance fiber reinforced polymer composites. However, the coil spring geometry is a difficult manufacturing challenge for composite materials. The goal of this thesis was to investigate efficient and low-cost manufacturing methods to produce light-weight polymer …


Fuel Injector Design Of A Hypersonic Jet Engine Using Computational Fluid Dynamics, Melissa Rose Mercado May 2022

Fuel Injector Design Of A Hypersonic Jet Engine Using Computational Fluid Dynamics, Melissa Rose Mercado

UNLV Theses, Dissertations, Professional Papers, and Capstones

The development of hypersonic airbreathing engines, such as a supersonic combustion ramjet, or scramjet, are implemented for flight Mach numbers over 5 where combustion must occur in supersonic conditions. The advancement of scramjet propulsion has led to favored usage over rocket propulsion systems for in atmosphere applications due to their lighter weight, higher specific impulse, and greater maneuverability [1]. The combustor section of a scramjet engine houses the fuel injectors. Fuel is injected into the supersonic flow with the main objective of achieving rapid and thorough fuel-air mixing because the residence time in the combustion chamber has a timescale of …


Computational Sodium Heat Pipe Simulation In Three Dimensions For Transient Nuclear Reactor Analysis With Variable Surface Heat Flux, Valerie Jean Lawdensky Dec 2021

Computational Sodium Heat Pipe Simulation In Three Dimensions For Transient Nuclear Reactor Analysis With Variable Surface Heat Flux, Valerie Jean Lawdensky

UNLV Theses, Dissertations, Professional Papers, and Capstones

Heat pipes are used to transfer heat through phase change in a liquid/vapor contained in a metal tube. They are passive devices that require no pumps to circulate the fluid and can transfer heat far more efficiently than a solid copper rod of the same diameter. They are commonly used in laptop computers where copper heat pipes filled with water take heat away from the CPU and transfer the heat to air through a heat exchanger. Heat pipes were also used in the Kilopower nuclear reactor where higher temperatures required sodium as the working fluid with stainless steel tubes. Computer …


Plasma Aerodynamics: Experimental Quantification Of The Lift Force Generated On An Airfoil Using Plasma Actuation To Estimate Power Requirements In Small Uav Applications, Getachew Ashenafi May 2021

Plasma Aerodynamics: Experimental Quantification Of The Lift Force Generated On An Airfoil Using Plasma Actuation To Estimate Power Requirements In Small Uav Applications, Getachew Ashenafi

UNLV Theses, Dissertations, Professional Papers, and Capstones

This research addressed the amount of electric power required to induce specific changes in lift force using a NACA 2127 airfoil with a chord length of ~28 mm, connected to a micro load cell, in a wind tunnel of 103 square centimeter cross-section. A DBD plasma actuator supplied by a ZVS driven high voltage pulsed DC circuit, operating at a frequency of 17.4 kHz, was utilized for voltages of up to 5000 V. Two configurations of electrode gapping were compared to determine the efficient use of power. The configuration with a gap of ~1 mm between the upstream and downstream …


Discrete Vortex Modeling Of Aerodynamic Flutter Of A Flat Plate With Damped Oscillations, Emma Chao May 2020

Discrete Vortex Modeling Of Aerodynamic Flutter Of A Flat Plate With Damped Oscillations, Emma Chao

UNLV Theses, Dissertations, Professional Papers, and Capstones

Aerodynamic flutter is the unstable oscillation of a body caused by the interaction of aerodynamic forces, structural elasticity, and inertial effects induced by vortex shedding. Current models of this phenomenon require finite element analysis and extensive computational power and processing time. The purpose of this study was to develop and validate a program that is faster and more efficient than existing approaches by using the discrete vortex method (DVM). By reducing the complexities of flutter to the shedding of vortices in an inviscid model of a two-dimensional flat plate with a torsional spring constant at its center, this phenomenon can …


Numerical And Experimental Analysis Of Air-Cooled Condensers, Kaipo Kekaula May 2020

Numerical And Experimental Analysis Of Air-Cooled Condensers, Kaipo Kekaula

UNLV Theses, Dissertations, Professional Papers, and Capstones

The scope of this project is to numerically and experimentally dry cooling process in air-cooled condensers (ACCs) designed for concentrated solar power (CSP) applications. This effort is driven by the growing economic and political pressure to reduce water consumption during power generation due to limited water resources in the arid geographic climate of the southwestern United States. A computational approach is used in conjunction with experimental validation to gain a more complete understanding of these systems.

Traditionally research into ACCs have been largely limited to air-side heat transfer modelling as it accounts for a large portion of the total thermal …


Cfd Modeling Of Smoke Movement In An Atrium, Robin Wu Dec 2018

Cfd Modeling Of Smoke Movement In An Atrium, Robin Wu

UNLV Theses, Dissertations, Professional Papers, and Capstones

The purpose of this paper is to better understand the behavior of smoke movement in an atrium. Thus gives first responders and civilians in and out of building a better understanding

With the advancements of modern technology, computers and softwares make simulation models possible such as fire models to simulate fire and smoke movements. In this paper, a computational fluid dynamic (CFD) software Fire Dynamic Simulator (FDS) is used to conduct a series of atrium tests to investigate the effectiveness of smoke exhaust systems. FDS solves the Navier-Stokes equations appropriate for low speed flows (Ma < 0.3) with an emphasis on smoke, heat transport and CO2 concentrations from fires. The default turbulence model used in FDS simulation is the Large Eddy Simulation (LES), which is the solution of Navier-Stokes equations at low speed.

The compartment tested was 9 …


Numerical Characterization Of The Flow Field And Heat Transfer Inside The Receiver Of A Parabolic Trough Solar Collector Carrying Supercritical Co2, Samad Gharehdaghimollahajloo Dec 2017

Numerical Characterization Of The Flow Field And Heat Transfer Inside The Receiver Of A Parabolic Trough Solar Collector Carrying Supercritical Co2, Samad Gharehdaghimollahajloo

UNLV Theses, Dissertations, Professional Papers, and Capstones

The aim of this research is to provide a detailed numerical analysis of flow field and heat transfer inside the heat collecting element of a parabolic trough collector. The parabolic trough collector is used as the boiler in a direct Super Critical Carbon Dioxide (S-CO2) Brayton cycle.

A single collector is modeled and analyzed with different inlet conditions. The working fluid is supercritical since its pressure is increased to above critical pressure in the compressor while its temperature reaches 300 °C after passing through the recuperators and before entering the solar field. For the first time, this research considers both …


Meshless Method For Simulation Of Compressible Flow, Ebrahim Nabizadeh Shahrebabak Aug 2017

Meshless Method For Simulation Of Compressible Flow, Ebrahim Nabizadeh Shahrebabak

UNLV Theses, Dissertations, Professional Papers, and Capstones

In the present age, rapid development in computing technology and high speed supercomputers has made numerical analysis and computational simulation more practical than ever before for large and complex cases. Numerical simulations have also become an essential means for analyzing the engineering problems and the cases that experimental analysis is not practical. There are so many sophisticated and accurate numerical schemes, which do these simulations. The finite difference method (FDM) has been used to solve differential equation systems for decades. Additional numerical methods based on finite volume and finite element techniques are widely used in solving problems with complex geometry. …


The Validation And Verification Of Les Modeling Using Kiva, David Fyda Aug 2016

The Validation And Verification Of Les Modeling Using Kiva, David Fyda

UNLV Theses, Dissertations, Professional Papers, and Capstones

In recent years, the use of large-eddy simulation (LES) has grown into new research methods. LES is preferred when compared to Reynold’s Averaged Navier Stokes (RANS), which separates velocity components into steady and fluctuating components. While RANS is relatively easy to implement, it does not fully resolve the range of turbulence eddies and has limitations that make it inaccurate in many practical circumstances. Direct numerical simulation, DNS, fully resolves all turbulent eddies to the smallest grid scale, but requires an extremely fine grid. This makes it computationally impractical to use as the computational power required to solve even the simplest …


Mitigation Of Moving Shocks In An Expanding Duct, Veraun Chipman Dec 2014

Mitigation Of Moving Shocks In An Expanding Duct, Veraun Chipman

UNLV Theses, Dissertations, Professional Papers, and Capstones

Inviscid flow theory governs the bulk motion of a gas at some distance away from the walls (i.e. outside the boundary layer). That is to say, there are no viscous forces in the bulk flow, which is modeled using the Euler equations. The Euler equations are simply the Navier-Stokes equations with zero viscosity terms. An ideal inviscid fluid, when brought into contact with a surface or wall, would naturally slip right past it since the fluid has no viscosity. In real life, however, a thin boundary layer forms between the wall or surface and the bulk flow. Shock wave boundary …


Feedback Speed Control Of A Small Two-Stroke Internal Combustion Engine That Propels An Unmanned Aerial Vehicle, Paul D. Fjare Aug 2014

Feedback Speed Control Of A Small Two-Stroke Internal Combustion Engine That Propels An Unmanned Aerial Vehicle, Paul D. Fjare

UNLV Theses, Dissertations, Professional Papers, and Capstones

Unmanned aerial vehicles (UAV) require intelligent control of their power source. Small UAV are typically powered by electric motors or small two-stroke internal combustion (IC) engines. Small IC engines allow for longer flight times but are more difficult to control and cause significant ground noise. A hybrid operation that uses the engine at high altitudes and the electric motors at low altitudes is desired. This would allow for extended flight with acceptable ground noise levels. Since the engine can not be restarted in the air it must be able to remain at idle for an extended time without stalling. A …


Supersonic Turbine Cascade Studies Using Computational Fluid Dynamics And Water Table Experiments, Shelby E. Nelson May 2013

Supersonic Turbine Cascade Studies Using Computational Fluid Dynamics And Water Table Experiments, Shelby E. Nelson

Honors College Theses

Design engineers use a variety of tools to perform calculations and to aid in the design process. For example, engineers designing gas turbines, specifically the aerodynamicists, use a combination of hand calculations, experimental data, and complex numerical codes to simulate air flow around each blade. Aerodynamicists designing gas turbines must predict the locations of the shocks to locate inefficiencies in the flow. In this thesis, three methods of calculating the shock angles are compared: analytical, experimental, and computational. Three different airfoil shapes are tested: a rectangular flat plate, a supersonic diamond, and a turbine airfoil. Cascade tests of the airfoil …


Design Of A "Figure-8" Spherical Motion Flapping Wing For Miniature Uav's, Zohaib Parvaiz Rehmat May 2009

Design Of A "Figure-8" Spherical Motion Flapping Wing For Miniature Uav's, Zohaib Parvaiz Rehmat

UNLV Theses, Dissertations, Professional Papers, and Capstones

Hummingbirds and some insects exhibit a Figure-8 motion, which allows them to undergo variety of maneuvers including hovering. It is therefore desirable to have flapping wing miniature air vehicles (FWMAV) that can replicate this unique wing motion. In this research, a design of a flapping wing for FWMAV that can mimic Figure-8 motion using a spherical four bar mechanism is presented. To produce Figure-8 motion, the wing is attached to the coupler point of the spherical four bar mechanism and driven by a DC servo motor. For verification of the design, a prototype of the wing and mechanism is fabricated …


College Of Engineering Senior Design Competition Spring 2008, University Of Nevada, Las Vegas May 2008

College Of Engineering Senior Design Competition Spring 2008, University Of Nevada, Las Vegas

Fred and Harriet Cox Senior Design Competition Projects

Part of every UNLV engineering student’s academic experience, the senior design project stimulates engineering innovation and entrepreneurship. Each student in their senior year chooses, plans, designs, and prototypes a product in this required element of the curriculum. A capstone to the student’s educational career, the senior design project encourages the student to use everything learned in the engineering program to create a practical, real world solution to an engineering challenge.

The senior design competition helps to focus the senior students in increasing the quality and potential for commercial application for their design projects. Judges from local industry evaluate the projects …


Modeling Redox-Based Magnetohydrodynamics In Three-Dimensional Microfluidic Channels, Hussameddine S. Kabbani, Aihua Wang, Xiaobing Luo, Shizhi Qian Jan 2007

Modeling Redox-Based Magnetohydrodynamics In Three-Dimensional Microfluidic Channels, Hussameddine S. Kabbani, Aihua Wang, Xiaobing Luo, Shizhi Qian

Mechanical Engineering Faculty Research

RedOx-based magnetohydrodynamic MHD[1] flows in three-dimensional microfluidic channels are investigated theoretically with a coupled mathematical model consisting of the Nernst-Planck equations for the concentrations of ionic species, the local electroneutrality condition for the electric potential, and the Navier-Stokes equations for the flow field. A potential difference is externally applied across two planar electrodes positioned along the opposing walls of a microchannel that is filled with a dilute RedOx electrolyte solution, and a Faradaic current transmitted through the solution results. The entire device is positioned under a magnetic field which can be provided by either a permanent magnet or an electromagnet. …


Adaptive Control Of A Projectile Fin Using Piezoelectric Elastic Beam, Smitha Mani, Sahjendra N. Singh, Surya Kiran Parimi, Woosoon Yim, Mohamed B. Trabia Aug 2005

Adaptive Control Of A Projectile Fin Using Piezoelectric Elastic Beam, Smitha Mani, Sahjendra N. Singh, Surya Kiran Parimi, Woosoon Yim, Mohamed B. Trabia

Mechanical Engineering Faculty Research

No abstract provided.