Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Aerodynamics and Fluid Mechanics

PDF

Theses/Dissertations

Institution
Keyword
Publication Year
Publication

Articles 151 - 177 of 177

Full-Text Articles in Mechanical Engineering

Novel Airframe Design For The Dual-Aircraft Atmospheric Platform Flight Concept, Eric Michael Mckee Dec 2012

Novel Airframe Design For The Dual-Aircraft Atmospheric Platform Flight Concept, Eric Michael Mckee

Doctoral Dissertations and Master's Theses

A high-altitude, long-endurance unmanned aerial airframe was designed for the innovative Dual-Aircraft Atmospheric Platform flight concept that exploits stratospheric wind velocity gradients to remain aloft indefinitely. Classical aircraft preliminary design techniques and high-fidelity tools were used to establish a baseline configuration.

Performance characteristics of numerous airfoil profiles were evaluated with two-dimensional flow software in an effort to determine the best-candidate airfoil for the unique application. Vortex-Lattice method tools were used to investigate the sensitivity of three-dimensional design parameters upon overall vehicle aerodynamic performance and determine both static and dynamic stability characteristics of the airframe. Performance capabilities of the finalized airframe …


Thermal Vacuum Integration For Cal Poly's Space Environments Laboratory, Chelsea Barackman, Steven Jackowski Jun 2012

Thermal Vacuum Integration For Cal Poly's Space Environments Laboratory, Chelsea Barackman, Steven Jackowski

Aerospace Engineering

The purpose of the senior project is to construct a thermal vacuum by utilizing a preexisting vacuum chamber in the Space Environments Lab, and a donated Advanced Thermal Sciences (ATS) chiller. While a thermal vacuum is already available on campus, building one for the Space Environments Lab would grant undergraduates access to the equipment, allowing a much better understanding of testing methods and procedures in use by the aerospace industry. This paper explains the design and analysis of the thermal vacuum (T-VAC) project as well as the operation and procedures required for the ATS chiller and fill/drain tank. The thermal …


Aerodynamic Test Platform For Human Powered Vehicle (Hpv), Spencer Wangerin, Spencer Lillywhite, Colburn Davis Jun 2012

Aerodynamic Test Platform For Human Powered Vehicle (Hpv), Spencer Wangerin, Spencer Lillywhite, Colburn Davis

Mechanical Engineering

The Aerodynamic Test Platform (ATP) for the Cal Poly HPV Club is a system that was designed by Cal Poly mechanical engineering students to measure aerodynamic characteristics of a human-powered vehicle (HPV). The HPV team desired a system that could quantify the lift, drag, and other aerodynamic qualities of a full scale HPV at various orientations in oncoming airflow. Established methods for determining aerodynamic characteristics include computational fluid dynamics (CFD) and wind tunnel testing of scaled models. The ATP was devised to simulate the test results given by a full-scale wind tunnel without requiring a wind tunnel large enough to …


Development And Verification Of A Navier-Stokes Solver With Vorticity Confinement Using Openfoam, Austin Barrett Kimbrell May 2012

Development And Verification Of A Navier-Stokes Solver With Vorticity Confinement Using Openfoam, Austin Barrett Kimbrell

Masters Theses

Vorticity Confinement (VC) is a numerical technique which enhances computation of fluid flows by acting as negative diffusion within the limit of vortical regions, preventing the inherent numerical dissipation present with conventional methods. VC shares similarities with large eddy simulation (LES), but its behavior is based on a stable negative dissipation of vortical structures controlled by the automatic balance between two parameters, μ [mu] and ε [epsilon].

In this thesis, three-dimensional, parallel-computing Navier-Stokes solvers with VC are developed using the OpenFOAM computational framework. OpenFOAM is an open-source collection of C++ libraries developed for computational fluid dynamics. Object-oriented programming concepts are …


Cfd Study On Aerodynamic Effects Of A Rear Wing/Spoiler On A Passenger Vehicle, Mustafa Cakir Jan 2012

Cfd Study On Aerodynamic Effects Of A Rear Wing/Spoiler On A Passenger Vehicle, Mustafa Cakir

Mechanical Engineering Master's Theses

Aerodynamic characteristics of a racing car are of significant interest in reducing car-racing accidents due to wind loading and in reducing the fuel consumption. At the present, modified car racing becomes more popular around the world. Sports cars are most commonly seen with spoilers, such as Ford Mustang, Subaru Impreza, and Chevrolet Corvette. Even though these vehicles typically have a more rigid chassis and a stiffer suspension to aid in high-speed maneuverability, a spoiler can still be beneficial. One of the design goals of a spoiler is to reduce drag and increase fuel efficiency. Many vehicles have a fairly steep …


Low Reynolds Number Flow Field Modification Via Travelling Wave Actuation Of A Vertically Aligned Wire Array Surface, John C. Calhoun Jan 2012

Low Reynolds Number Flow Field Modification Via Travelling Wave Actuation Of A Vertically Aligned Wire Array Surface, John C. Calhoun

Theses and Dissertations--Mechanical Engineering

Experiments were conducted to observe the effects of an active wire surface on low-Reynolds number Poiseuille flow. The objective was to evaluate the feasibility of actuating piezoelectric nanowires into a travelling wave motion in order to reduce wall shear stress in turbulent flows. Studies have shown that travelling wave motions introduced into the bounding wall of turbulent flow can reduce wall shear stress by disrupting the formation of drag-inducing coherent vortical structures. A Reynolds number scaled flow facility was designed to represent the near-wall region of turbulent flow. A wire surface was installed in the bounding wall and dynamically actuated …


Aerodynamics And Control Of A Deployable Wing Uav For Autonomous Flight, Michael Thamann Jan 2012

Aerodynamics And Control Of A Deployable Wing Uav For Autonomous Flight, Michael Thamann

Theses and Dissertations--Mechanical Engineering

UAV development and usage has increased dramatically in the last 15 years. In this time frame the potential has been realized for deployable UAVs to the extent that a new class of UAV was defined for these systems. Inflatable wing UAVs provide a unique solution for deployable UAVs because they are highly packable (some collapsing to 5-10% of their deployed volume) and have the potential for the incorporation of wing shaping. In this thesis, aerodynamic coefficients and aileron effectiveness were derived from the equations of motion of aircraft as necessary parameters for autonomous flight. A wind tunnel experiment was performed …


Vortex Shedding From Elongated Bluff Bodies, Zachary J. Taylor Sep 2011

Vortex Shedding From Elongated Bluff Bodies, Zachary J. Taylor

Electronic Thesis and Dissertation Repository

As the spans of suspension bridges increase, the structures become inherently flexible. The flexibility of these structures, combined with the wind and particular aerodynamics, can lead to significant motions. From the collapse due to flutter of the Tacoma Narrows Bridge to the case of vortex-induced vibrations (VIV) of the Storebælt Bridge, it is evident that a better understanding of the aerodynamics of these geometries is necessary. The work herein is motivated by these two problems and is presented in two parts.

In the first part, the focus is on the physical mechanisms of vortex shedding. It is shown that the …


The Biglobal Instability Of The Bidirectional Vortex, Joshua Will Batterson Aug 2011

The Biglobal Instability Of The Bidirectional Vortex, Joshua Will Batterson

Doctoral Dissertations

State of the art research in hydrodynamic stability analysis has moved from classic one-dimensional methods such as the local nonparallel approach and the parabolized stability equations to two-dimensional, biglobal, methods. The paradigm shift toward two dimensional techniques with the ability to accommodate fully three-dimensional base flows is a necessary step toward modeling complex, multidimensional flowfields in modern propulsive applications. Here, we employ a two-dimensional spatial waveform with sinusoidal temporal dependence to reduce the three-dimensional linearized Navier-Stokes equations to their biglobal form. Addressing hydrodynamic stability in this way circumvents the restrictive parallel-flow assumption and admits boundary conditions in the streamwise direction. …


Continuously Variable Rotorcraft Propulsion System: Modelling And Simulation, Naveen Kumar Vallabhaneni Aug 2011

Continuously Variable Rotorcraft Propulsion System: Modelling And Simulation, Naveen Kumar Vallabhaneni

Masters Theses

This study explores the variable speed operation and shift response of a prototype of a two speed single path CVT rotorcraft driveline system. Here a Comprehensive Variable Speed Rotorcraft Propulsion system Modeling (CVSRPM) tool is developed and utilized to simulate the drive system dynamics in steady forward speed condition. This investigation attempts to build upon previous variable speed rotorcraft propulsion studies by:

1) Including fully nonlinear first principles based transient gas-turbine engine model

2) Including shaft flexibility

3) Incorporating a basic flight dynamics model to account for interactions with the flight control system.

Through exploring the interactions between the various …


Port Flow Test System, Daniel Chairez, Chelsea E. Crawford, Daniel S. Welch Jun 2011

Port Flow Test System, Daniel Chairez, Chelsea E. Crawford, Daniel S. Welch

Mechanical Engineering

Solar Turbines Gas Compressor Engineering Division of San Diego, California called upon the Mechanical Engineering students of California Polytechnic University, San Luis Obispo to provide recommendations for optimization of compressor end cap port design. Various sizes of compressors have end caps with numerous ports that exchange fluids between the inside and outside of the working fluid pressure vessel. Because so many ports must exist on the end caps, unusual flow paths are created to supply the appropriate location within the compressor. These flow paths commonly consist of a drilled inlet hole which intersects with a sudden expansion. The sudden expansion …


Rayleigh Test Apparatus Design Report, Josef Duller, Owen Raybould, James Nicovich Jun 2011

Rayleigh Test Apparatus Design Report, Josef Duller, Owen Raybould, James Nicovich

Mechanical Engineering

The Rayleigh Test Apparatus is a device that will be used to test the thermodynamic properties of Nitrous Oxide to assess the feasibility of using this fluid as a coolant for a hybrid rocket aero spike. The aero spike is intended to redirect the propulsion flow as it leaves the engine to create a more efficient flow pattern at low and high altitudes. However, there are issues of overheating which leads to melting of the aero spike. For this reason, the use of nitrous oxide (N2O) as a coolant is being explored. N20 is being considered because it is already …


Effect Of Unsteady Combustion On The Stability Of Rocket Engines, Tina Morina Rice May 2011

Effect Of Unsteady Combustion On The Stability Of Rocket Engines, Tina Morina Rice

Doctoral Dissertations

Combustion instability is a problem that has plagued the development of rocket-propelled devices since their conception. It is characterized by the occurrence of high-frequency nonlinear gas oscillations inside the combustion chamber. This phenomenon degrades system performance and can result in damage to both structure and instrumentation.

The goal of this dissertation is to clarify the role of unsteady combustion in the combustor instability problem by providing the first quantified estimates of its effect upon the stability of liquid rocket engines. The combination of this research with a new system energy balance method, accounting for all dynamic interactions within a system, …


Cross-Flow, Staggered-Tube Heat Exchanger Analysis For High Enthalpy Flows, Gary L. Hammock May 2011

Cross-Flow, Staggered-Tube Heat Exchanger Analysis For High Enthalpy Flows, Gary L. Hammock

Masters Theses

Cross flow heat exchangers are a fairly common apparatus employed throughout many industrial processes. For these types of systems, correlations have been extensively developed. However, there have been no correlations done for very high enthalpy flows as produced by Arnold Engineering Development Center’s (AEDC) H2 facility. The H2 facility uses a direct current electric arc to heat air which is then expanded through a converging-diverging nozzle to impart a supersonic velocity to the air. This high enthalpy, high temperature air must be cooled downstream by the use of a cross flow heat exchanger.

It is of interest to evaluate the …


Modeling And Analysis Of Turbojet Compressor Inlet Temperature Measurement System Performance, Brian A Binkley May 2011

Modeling And Analysis Of Turbojet Compressor Inlet Temperature Measurement System Performance, Brian A Binkley

Masters Theses

Accurate measurement of turbine engine compressor inlet total temperature is paramount for controlling engine speed and pressure ratio. Various methods exist for measuring compressor inlet total temperature on turbojet engines with hydromechanical control. One method involves the use of an ejector-diffuser system (eductor) to pull air from the engine inlet in order to measure the incoming total temperature. Analysis of historical test data has revealed that the inlet temperature measurement can be biased at certain flight conditions causing engine mis-scheduling and off-nominal engine operation. This bias is characterized primarily by adverse heat transfer effects and secondly by poor flow quality …


Perch Landing Maneuvers And Control For A Rotating-Wing Mav, Jonathan Louis Lubbers Jan 2011

Perch Landing Maneuvers And Control For A Rotating-Wing Mav, Jonathan Louis Lubbers

University of Kentucky Master's Theses

This thesis addresses flight control of the perch landing maneuver for micro-aerial vehicles. A longitudinal flight model is constructed for a pigeon-sized aircraft. In addition to a standard elevator control surface, wing-rotation also considered as a non-standard actuator for increasing low-speed aerodynamic braking. Optimal state and control trajectories for the perch landing maneuver are computed using commercial software. A neighboring optimal control law is then developed and implemented in a set of flight simulations. Simulations are run with both a quasisteady and an unsteady aerodynamic model. The effectiveness of wing rotation and of the neighboring optimal control law is discussed, …


Implementation Of A Conrad Probe On A Boundary Layer Measurement System, Charles Rocky Ulk Aug 2010

Implementation Of A Conrad Probe On A Boundary Layer Measurement System, Charles Rocky Ulk

Master's Theses

This thesis presents the design, calibration, and performance evaluation of a type of two-hole pressure probe anemometer known as a Conrad probe, as well as its subsequent implementation on an autonomous, compact boundary layer measurement device and its first application for subsonic in-flight measurements of a swept wing boundary layer. Calibration of the Conrad probe was accomplished using two calibration functions and a non-nulling method for resolving in-plane flow velocity direction and magnitude over a range of ±30 degrees. This approach to calibration and application offered the advantages of rapid data acquisition with lower energy consumption than alternative methods for …


Analysis Of Wake Vortices Of A Medium Range Twin-Propeller Military Cargo Aircraft Using Statistically Designed Experiments, Burhan Sahin Jan 2010

Analysis Of Wake Vortices Of A Medium Range Twin-Propeller Military Cargo Aircraft Using Statistically Designed Experiments, Burhan Sahin

Mechanical & Aerospace Engineering Theses & Dissertations

An experimental study was initiated to analyze the trajectories of the streamwise vortices behind the wing tip and flap of a medium range and propeller driven twin-engine military cargo aircraft. The model used for the experimental study was a generic, high wing and half model of a propeller driven aircraft and mounted within Old Dominion University's Low Speed Wind Tunnel where the wind tunnel flow speed was set to constant value of 9 m/sec. The main purpose of the study was to reach regression models for the motion and vorticity strength of both vortices under varying factors such as angle …


Rayleigh Flow Of Two-Phase Nitrous Oxide As A Hybrid Rocket Nozzle Coolant, Lauren May Nelson Sep 2009

Rayleigh Flow Of Two-Phase Nitrous Oxide As A Hybrid Rocket Nozzle Coolant, Lauren May Nelson

Master's Theses

The Mechanical Engineering Department at California Polytechnic State University in San Luis Obispo currently maintains a lab-scale hybrid rocket motor for which nitrous oxide is utilized as the oxidizer in the combustion system. Because of its availability, the same two-phase (gas and liquid) nitrous oxide that is used in the combustion system is also routed around the throat of the hybrid rocket’s converging-diverging nozzle as a coolant. While this coolant system has proven effective empirically in previous tests, the physics behind the flow of the two-phase mixture is largely unexplained. This thesis provides a method for predicting some of its …


A System For Measuring The Lift And Drag Forces Of A Spinning Golf Ball Held Fixed Within A Wind Tunnel, Ryan R. Miller Feb 2009

A System For Measuring The Lift And Drag Forces Of A Spinning Golf Ball Held Fixed Within A Wind Tunnel, Ryan R. Miller

Master's Theses

A system was designed, built and tested in order to test the aerodynamic properties of a standard golf ball in a wind tunnel manufactured by ELD, Inc. model 406(B). The system consists of a rotating shaft, on which the golf ball is attached, connected to a two-axis force transducer. Additionally, an automated data acquisition system was built for enhanced precision of measurements. Data for wind speeds up to 160 ft/s and rotational speeds up to 8,600 rpm were obtained and analyzed. The purpose of the designed apparatus was to allow for studies to better understand the lift and drag coefficients …


A Drag Estimate For Concept-Stage Ship Design Optimization, Douglas Read Jan 2009

A Drag Estimate For Concept-Stage Ship Design Optimization, Douglas Read

Electronic Theses and Dissertations

During the initial phases of ship design, the naval architect would like to have as much information as possible about the design space. This information not only helps determine a good set of initial characteristics, it allows for informed design changes when reacting to evolving requirements. One of the most difficult performance measures to evaluate is the ship wave drag. This estimate is important in an optimization, because wetted surface and wave drag must be balanced. Multi-parameter optimization algorithms exist, but need a very fast and inexpensive fitness evaluation for them to be effective. Even though linear theory does capture …


Experimental Investigation Of Active Control Of Bluff Body Vortex Shedding, Ilteris Koc Jan 2008

Experimental Investigation Of Active Control Of Bluff Body Vortex Shedding, Ilteris Koc

Mechanical & Aerospace Engineering Theses & Dissertations

Mean and fluctuating forces acting on a body are strongly related to vortex shedding generated behind it. Therefore, it is possible to obtain substantial reductions of at least the unsteady forces if vortex shedding is controlled or its regularity is reduced. While conventional active flow control methods are mainly concerned with direct interaction with, and alteration of, the mean flow about a body, modern techniques involve altering existing flow instabilities using relatively small inputs to obtain large-scale changes of mean flows. Aerodynamic flow control may be intended to delay or suppress boundary layer separation through creation of a boundary layer …


External Aerodynamics Of Heavy Ground Vehicles: Computations And Wind Tunnel Testing, Ilhan Bayraktar Apr 2002

External Aerodynamics Of Heavy Ground Vehicles: Computations And Wind Tunnel Testing, Ilhan Bayraktar

Mechanical & Aerospace Engineering Theses & Dissertations

Aerodynamic characteristics of a ground vehicle affect vehicle operation in many ways. Aerodynamic drag, lift and side forces have influence on fuel efficiency, vehicle top speed and acceleration performance. In addition, engine cooling, air conditioning, wind noise, visibility, stability and crosswind sensitivity are some other tasks for vehicle aerodynamics. All of these areas benefit from drag reduction and changing the lift force in favor of the operating conditions. This can be achieved by optimization of external body geometry and flow modification devices. Considering the latter, a thorough understanding of the airflow is a prerequisite.

The present study aims to simulate …


Vortex Wake And Exhaust Plume Interaction, Including Ground Effect, Ihab Gaber Adam Jul 1998

Vortex Wake And Exhaust Plume Interaction, Including Ground Effect, Ihab Gaber Adam

Mechanical & Aerospace Engineering Theses & Dissertations

Computational modeling and studies of the near-field wake-vortex turbulent flows, far-field turbulent wake-vortex/exhaust-plume interaction for subsonic and High Speed Civil Transport (HSCT) airplane, and wake-vortex/exhaust-plume interaction with the ground are carried out. The three-dimensional, compressible Reynolds-Averaged Navier-Stokes (RANS) equations are solved using the implicit, upwind, Roe-flux-differencing, finite-volume scheme. The turbulence models of Baldwin and Lomax, one-equation model of Spalart and Allmaras and two-equation shear stress transport model of Menter are implemented with the RANS solver for turbulent-flow modeling.

For the near-field study, computations are carried out on a fine grid for a rectangular wing with a NACA-0012 airfoil section and …


Three-Dimensional Aerodynamic Design Optimization Using Discrete Sensitivity Analysis And Parallel Computing, Amidu Olawale Oloso Apr 1997

Three-Dimensional Aerodynamic Design Optimization Using Discrete Sensitivity Analysis And Parallel Computing, Amidu Olawale Oloso

Mechanical & Aerospace Engineering Theses & Dissertations

A hybrid automatic differentiation/incremental iterative method was implemented in the general purpose advanced computational fluid dynamics code (CFL3D Version 4.1) to yield a new code (CFL3D.ADII) that is capable of computing consistently discrete first order sensitivity derivatives for complex geometries. With the exception of unsteady problems, the new code retains all the useful features and capabilities of the original CFL3D flow analysis code. The superiority of the new code over a carefully applied method of finite-differences is demonstrated.

A coarse grain, scalable, distributed-memory, parallel version of CFL3D.ADII was developed based on "derivative stripmining". In this data-parallel approach, an identical copy …


Sensitivity Analysis And Optimization Of Aerodynamic Configurations With Blend Surfaces, Almuttil Mathew Thomas Apr 1996

Sensitivity Analysis And Optimization Of Aerodynamic Configurations With Blend Surfaces, Almuttil Mathew Thomas

Mechanical & Aerospace Engineering Theses & Dissertations

A novel (geometrical) parametrization procedure using solutions to a suitably chosen fourth order partial differential equation is used to define a class of airplane configurations. Inclusive in this definition are surface grids, volume grids, and grid sensitivity. The general airplane configuration has wing, fuselage, vertical tail and horizontal tail. The design variables are incorporated into the boundary conditions, and the solution is expressed as a Fourier series. The fuselage has circular cross section, and the radius is an algebraic function of four design parameters and an independent computational variable. Volume grids are obtained through an application of the Control Point …


Numerical Simulation Of Turbulent Flows Past Three-Dimensional Cavities, Shivakumar Srinivasan Jul 1988

Numerical Simulation Of Turbulent Flows Past Three-Dimensional Cavities, Shivakumar Srinivasan

Mechanical & Aerospace Engineering Theses & Dissertations

Computations have been performed to simulate turbulent supersonic, transonic, and subsonic flows past three-dimensional deep, transitional, and shallow cavities. Simulation of these self sustained oscillatory flows has been generated through time accurate solutions of Reynolds averaged full Navier-Stokes equations using the explicit MacCormack scheme. The Reynolds stresses have been modeled, using the Baldwin-Lomax algebraic turbulence model with certain modifications. The computational results include instantaneous and time averaged flow properties everywhere in the computational domain. Time series analyses have been performed for the instantaneous pressure values on the cavity floor. Comparison with experimental data is made in terms of the mean …