Open Access. Powered by Scholars. Published by Universities.®

Structural Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Structural Materials

Effects Of Plastic Deformation From Ultrasonic Additive Manufacturing, Michael Pagan May 2022

Effects Of Plastic Deformation From Ultrasonic Additive Manufacturing, Michael Pagan

Doctoral Dissertations

Nuclear energy technology can be exponentially advanced using advanced manufacturing, which can drastically transform how materials, structures, and designs can be built. Ultrasonic Additive Manufacturing (UAM) represents one of the four main additive manufacturing methods, although it is also the newest. As UAM technology and applications develop, a fundamental understanding of the bonding mechanism is crucial to fully realize its potential. Currently UAM bonding is considered to occur through breaking down surface asperities and removing surface oxides. Plastic deformation occurs although its role is currently unclear. This research analyzes material configurations in a variety of geometries, with similar and dissimilar …


Design And Evaluation Of A Unique Weighted-Sum-Based Anger Camera, Matthew W. Seals May 2022

Design And Evaluation Of A Unique Weighted-Sum-Based Anger Camera, Matthew W. Seals

Masters Theses

Anger camera imaging technology has become widely popular for neutron diffraction imaging due to recent shortages in Helium-3 (He-3). Research into neutron diffraction optimized Anger camera by the Oak Ridge National Laboratory (ORNL) detectors group has provided an alternative to He-3 Tube-based detectors with a high-resolution Anger camera. However, the cost of these high-resolution Anger camera technology can make it less attractive than He-3 tubes when a large Field of View (FOV) is desired. Currently, there is a need for a lower-cost alternative to this high-resolution anger camera. Further applications for Anger camera have become of interest with the advent …


Fundamentals Of Cavity Formation In Α-Fe And Fe-Cr Alloys, Yan-Ru Lin Dec 2021

Fundamentals Of Cavity Formation In Α-Fe And Fe-Cr Alloys, Yan-Ru Lin

Doctoral Dissertations

Ferritic-martensitic steels are attractive candidate materials for fusion and advanced fission reactors primarily due to their low swelling characteristic, attractive thermo-mechanical properties, and the potential for development of nanostructured ferritic alloys. However, significant discrepancies exist regarding the effect of solutes and irradiation temperature on cavity swelling under ion versus neutron irradiation conditions. Several mechanisms have been proposed that may affect cavity swelling, but no general theory or model has received complete acceptance to explain these phenomena.

To better understand the formation of cavities in ferritic steels, we have performed multi-temperature (400-550°C) single-beam and simultaneous dual-beam irradiations (ex-situ and in-situ) on …


Modeling Of Dislocation Channel Formation And Evolution In Irradiated Metals, Peter James Doyle Dec 2017

Modeling Of Dislocation Channel Formation And Evolution In Irradiated Metals, Peter James Doyle

Masters Theses

Defect-free dislocation channel formation has been reported to promote plastic instability during tensile testing via localized plastic flow, leading to a distinct loss of ductility and strain hardening in many low-temperature irradiated materials. In order to study the underlying mechanisms governing dislocation channel width and formation, the channel formation process is modeled via a simple stochastic dislocation-jog process dependent upon grain size, defect cluster density, and defect size. Dislocations traverse a field of defect clusters and jog stochastically upon defect interaction, forming channels of low defect-density. Based upon prior molecular dynamics (MD) simulations and in-situ experimental transmission electron microscopy (TEM) …


Modeling And Experimental Investigation On The Influence Of Radiation Defects On Helium Behavior In Bcc Iron, Zuya Huang May 2016

Modeling And Experimental Investigation On The Influence Of Radiation Defects On Helium Behavior In Bcc Iron, Zuya Huang

Masters Theses

Fe-based alloys are important structural materials for both fission and fusion energy. For fusion applications, the challenges of radiation-induced changes in microstructure, properties and performance is further challenged by the concomitant production of helium from (n, alpha) nuclear reactions and fusion reactions. Due to the lack of a volumetric, high flux 14-MeV neutron source, studying these phenomena require the use of computational materials modeling and novel experimental methods. In this thesis, molecular dynamics (MD) simulations was used to investigate the synergistic interactions of helium with prismatic dislocation loops characteristic of those observed in neutron irradiated iron to determine how the …


Ion Irradiation-Induced Microstructural Change In Sic, Chien-Hung Chen Dec 2015

Ion Irradiation-Induced Microstructural Change In Sic, Chien-Hung Chen

Doctoral Dissertations

The high temperature radiation resistance of nuclear materials has become a key issue in developing future nuclear reactors. Because of its mechanical stability under high-energy neutron irradiation and high temperature, silicon carbide (SiC) has great potential as a structural material in advanced nuclear energy systems.

A newly developed nano-engineered (NE) 3C SiC with a nano-layered stacking fault (SFs) structure has been recently considered as a prospective choice due to enhanced point defect annihilation between layer-type structures, leading to outstanding radiation durability.

The objective of this project was to advance the understanding of gas bubble formation mechanisms under irradiation conditions in …


Ion Irradiation Characterization Studies Of Max Phase Ceramics, Daniel William Clark Dec 2015

Ion Irradiation Characterization Studies Of Max Phase Ceramics, Daniel William Clark

Masters Theses

The family of layered carbides and nitrides known as MAX phase ceramics combine many attractive properties of both ceramics and metals due to their nanolaminate crystal structure and are promising potential candidates for application in future nuclear reactors. This thesis reports on the background, design, and analysis of an experiment focused on determining the effects of energetic heavy ion irradiations on polycrystalline samples of titanium silicon carbide 312, titanium aluminum carbide 312, and titanium aluminum carbide 211. The irradiation conditions consisted of ion doses between 10 and 30 displacements per atom at temperatures of 400 and 700 degrees Celsius, conditions …


Molecular Dynamics Simulation Of Irradiation Damage In Multicomponent Alloys, Wei Guo May 2015

Molecular Dynamics Simulation Of Irradiation Damage In Multicomponent Alloys, Wei Guo

Doctoral Dissertations

The development of the generation IV reactors calls for radiation resistant materials. This thesis proposes that the newly developed single phase solid solution of high-entropy alloys (HEAs) can be such candidates. HEAs can undergo the crystalline to amorphous to crystalline (C-A-C) transitions under radiation. The radiation induced amorphous structure is a highly radiation resistant medium as shown by previous studies, and it further transforms to crystalline phases without much structural defects. In this thesis, by reviewing the formation rules of solid solutions and amorphous metallic glasses, it is suggested that the atomic size plays a key role affecting the C-A-C …