Open Access. Powered by Scholars. Published by Universities.®

Semiconductor and Optical Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Semiconductor and Optical Materials

Modeling Recombination In Solar Cells, Paul Chery Jun 2018

Modeling Recombination In Solar Cells, Paul Chery

Macalester Journal of Physics and Astronomy

Solar cells are a competitive alternative to nonrenewable energy sources such as fossil fuels. However, the efficiency of these devices is limited by photogenerated carrier recombination. We use a finite difference numerical model to study recombination phenomena in the absorber layer of solar cells including alternate recombination models and the effects of spatial distribution of recombination centers. We compare the effect of using the constant lifetime approximation for recombination to the full Shockley-Read-Hall expression in Silicon solar cells and find that the constant lifetime approximation holds for high defect densities but not for high photon flux densities. Finally, we simulate …


Design, Fabrication, And Characterization Of Novel Optoelectronic Devices For Near-Infrared Detection, Ahmad Nusir May 2018

Design, Fabrication, And Characterization Of Novel Optoelectronic Devices For Near-Infrared Detection, Ahmad Nusir

Graduate Theses and Dissertations

Investigating semiconductor materials and devices at the nanoscale has become crucial in order to maintain the exponential development in today’s technology. There is a critical need for making devices lower in power consumption and smaller in size. Nanoscale semiconductor materials provide a powerful platform for optoelectronic device engineers. They own interesting properties which include enhanced photoconductivity and size-tunable interband transitions.

In this research, different types of nanostructures were investigated for optoelectronic devices: nanocrystals, nanowires, and thin-films. First, lead selenide nanocrystals with narrow bandgap were synthesized, size-tailored, and functionalized with molecular ligands for the application of uncooled near-infrared photodetectors. The devices …


Design, Fabrication, And Characterization Of All-Inorganic Quantum Dot Light Emitting Diodes, Ramesh Vasan May 2018

Design, Fabrication, And Characterization Of All-Inorganic Quantum Dot Light Emitting Diodes, Ramesh Vasan

Graduate Theses and Dissertations

Quantum dot light emitting diodes are investigated as a replacement to the existing organic light emitting diodes that are commonly used for thin film lighting and display applications. In this, all-inorganic quantum dot light emitting diodes with inorganic quantum dot emissive layer and inorganic charge transport layers are designed, fabricated, and characterized. Inorganic materials are more environmentally stable and can handle higher current densities than organic materials. The device consists of CdSe/ZnS alloyed core/shell quantum dots as the emissive layer and metal oxide charge transport layer. The charge transport in these devices is found to occur through resonant energy transfer …