Open Access. Powered by Scholars. Published by Universities.®

Polymer and Organic Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Electrospinning

Dissertations, Master's Theses and Master's Reports

Articles 1 - 2 of 2

Full-Text Articles in Polymer and Organic Materials

Artificial Synthetic Scaffolds For Tissue Engineering Application Emphasizing The Role Of Biophysical Cues, Samerender Nagam Hanumantharao Jan 2020

Artificial Synthetic Scaffolds For Tissue Engineering Application Emphasizing The Role Of Biophysical Cues, Samerender Nagam Hanumantharao

Dissertations, Master's Theses and Master's Reports

The mechanotransduction of cells is the intrinsic ability of cells to convert the mechanical signals provided by the surrounding matrix and other cells into biochemical signals that affect several distinct processes such as tumorigenesis, wound healing, and organ formation. The use of biomaterials as an artificial scaffold for cell attachment, differentiation and proliferation provides a tool to modulate and understand the mechanotransduction pathways, develop better in vitro models and clinical remedies. The effect of topographical cues and stiffness was investigated in fibroblasts using polycaprolactone (PCL)- Polyaniline (PANI) based scaffolds that were fabricated using a self-assembly method and electrospinning. Through this …


A 3d Biomimetic Scaffold Using Electrospinning For Tissue Engineering Applications, Samerender Nagam Hanumantharao Jan 2017

A 3d Biomimetic Scaffold Using Electrospinning For Tissue Engineering Applications, Samerender Nagam Hanumantharao

Dissertations, Master's Theses and Master's Reports

Electrospinning holds great promise for designing functional 3D biomimetic scaffolds for tissue engineering applications. The technique allows for the reproducible fabrication of 3D scaffolds with control over the porosity and thickness. In this work, a novel method for the synthesis of a 3D electroactive scaffold using electrospinning from polycaprolactone (PCL), Polyvinylidene Fluoride (PVDF) and Polyaniline (PANI) is reported. Additional scaffolds involving different morphologies of PCL, PCL-PVDF and PCL-PANI-PVDF were also fabricated and evaluated. The scaffolds were characterized using electron microscopy to visualize the morphologies. Infrared spectroscopy was used to confirm the presence of polymers and their respective phases in the …