Open Access. Powered by Scholars. Published by Universities.®

Polymer and Organic Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Polymer and Organic Materials

General-Purpose Coarse-Grained Toughened Thermoset Model For 44dds/Dgeba/Pes, Michael M. Henry, Stephen Thomas, Mone’T Alberts, Carla E. Estridge, Brittan Farmer, Olivia Mcnair, Eric Jankowski Nov 2020

General-Purpose Coarse-Grained Toughened Thermoset Model For 44dds/Dgeba/Pes, Michael M. Henry, Stephen Thomas, Mone’T Alberts, Carla E. Estridge, Brittan Farmer, Olivia Mcnair, Eric Jankowski

Materials Science and Engineering Faculty Publications and Presentations

The objective of this work is to predict the morphology and material properties of crosslinking polymers used in aerospace applications. We extend the open-source dybond plugin for HOOMD-Blue to implement a new coarse-grained model of reacting epoxy thermosets and use the 44DDS/DGEBA/PES system as a case study for calibration and validation. We parameterize the coarse-grained model from atomistic solubility data, calibrate reaction dynamics against experiments, and check for size-dependent artifacts. We validate model predictions by comparing glass transition temperatures measurements at arbitrary degree of cure, gel-points, and morphology predictions against experiments. We demonstrate for the first time in molecular simulations …


Graphene/Oxide Interactions With Polymer Networks Modeled Using Molecular Dynamics, Matthew Alan Reil Jan 2020

Graphene/Oxide Interactions With Polymer Networks Modeled Using Molecular Dynamics, Matthew Alan Reil

Electronic Theses and Dissertations

Due to its unique physical properties, graphene has shown great promise as an additive to Polymer Matrix Composites (PMCs) for material property enhancement. Achieving homogeneous dispersion of the graphene platelets within a polymeric network is critical to realizing these enhancements. Research has shown that achieving homogeneous dispersion of graphene platelets within PMCs is challenging as graphene is immiscible with most polymeric networks. This work used Molecular Dynamics (MD) simulations to demonstrate dispersion of graphene platelets within PMCs is inhibited by molecular surface charge potentials. Further simulations were conducted to demonstrate functionalized forms of graphene, specifically graphene oxide, have altered surface …