Open Access. Powered by Scholars. Published by Universities.®

Polymer and Organic Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Polymer and Organic Materials

Enhanced Covalent Interface, Crosslinked Network And Gas Barrier Property Of Functionalized Graphene Oxide/Styrene-Butadiene Rubber Composites Triggered By Thiol-Ene Click Reaction, Long Zheng, Stephen Jerrams, Tian Su, Zongchao Xu, Liqun Zhang, Li Liu, Shipeng Wen Jan 2020

Enhanced Covalent Interface, Crosslinked Network And Gas Barrier Property Of Functionalized Graphene Oxide/Styrene-Butadiene Rubber Composites Triggered By Thiol-Ene Click Reaction, Long Zheng, Stephen Jerrams, Tian Su, Zongchao Xu, Liqun Zhang, Li Liu, Shipeng Wen

Articles

The high gas barrier property of a rubber composite is of great significance for reducing the exhaust gas emissions due to tire rolling resistance and hence the contribution this factor makes to environmental protection. Enhanced covalent interfaces and crosslinked networks are crucial to the gas barrier property of rubber composites. In this research, γ-mercaptopropyltriethoxysilane (MPS) modified GO (MGO)/styrene-butadiene rubber (SBR) composites were prepared by a synergetic strategy of latex compounding method and thiol-ene click reaction. It was found that the mercapto groups in MGO reacted with the vinyl groups in SBR molecules through thiol-ene click reaction during the crosslinking process …


The Study Of Chemical Induced Polyolefin-Based Ion Exchange Membrane For Electrodialysis Application, Di Huang Jan 2020

The Study Of Chemical Induced Polyolefin-Based Ion Exchange Membrane For Electrodialysis Application, Di Huang

Dissertations, Master's Theses and Master's Reports

High-performance ion exchange membranes with high ion exchange capacity (IEC), excellent mechanical properties, lower membrane resistance and superior ions conductivity were developed with chemical-induced polymerization in this work. Through a series of synthesizing experiments, structure characterization and properties testing for polyolefin-based cation exchange membrane (CEM) and anion exchange membrane (AEM), LDPE proved to be an optimized backbone material. The CEM with 57.5% styrene, 38.4% LDPE, 3% crosslinking degree and 1% initiator addition yield the highest IEC value (1.72 mol/g) and moderate burst strength. The 10% addition of styrene was found to enhance IEC of 57% to AEM. However, continually increase …