Open Access. Powered by Scholars. Published by Universities.®

Polymer and Organic Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Polymer and Organic Materials

Nonlinear Dielectric Behavior Of Field-Induced Antiferroelectric/Paraelectric-To-Ferroelectric Phase Transition For High Energy Density Capacitor Application, Mingyang Li Jan 2017

Nonlinear Dielectric Behavior Of Field-Induced Antiferroelectric/Paraelectric-To-Ferroelectric Phase Transition For High Energy Density Capacitor Application, Mingyang Li

Dissertations, Master's Theses and Master's Reports

Electric field-induced antiferroelectric(AFE)/paraelectric(PE)-to-ferroelectric(FE) phase transitions are investigated for the associated nonlinear dielectric behavior, which could offer high dielectric capacity. The phenomenon in monolithic materials has been computed for Kittel antiferroelectric and BaTiO3 model systems using the Landau-Ginzburg-Devonshire theory. The general switching curves give values of the polarization as a function of external electric field. A similar computation is performed for particle-filled polymer-matrix composites where an internal depolarization field is considered. The polarization-electric field response changes with different depolarization factors, which demonstrate the shape and alignment of the dielectric particles embedded in polymer-matrix are key factors for the composite to …


Formulation And Testing Of Biodegradable Polymeric Coating On Zinc Wires In Cardiovascular Stent Application, Avishan Arab Shomali Jan 2017

Formulation And Testing Of Biodegradable Polymeric Coating On Zinc Wires In Cardiovascular Stent Application, Avishan Arab Shomali

Dissertations, Master's Theses and Master's Reports

Biodegradable and biocompatible poly (L-lactic-acid) (PLLA) coating was applied on a modified zinc (Zn) substrate by dip coating, with the intent to delay the bio-corrosion and slow the degradation rate of zinc substrate. 3-(Trimethoxysilyl) propyl methacrylate (MPS) was used for modification of the zinc substrate for promoting the adhesion between the metallic substrate and the polymer coating. It is hypothesized that the delay in Zn biodegradation could be useful in the first several weeks to prevent the early loss of mechanical integrity of the endovascular stent and to improve the healing process of the diseased vascular site. The PLLA coating …


Tightening The Loop On The Circular Economy: Distributed Plastic Recycling With An Open Source Recyclebot, Shan Zhong Jan 2017

Tightening The Loop On The Circular Economy: Distributed Plastic Recycling With An Open Source Recyclebot, Shan Zhong

Dissertations, Master's Theses and Master's Reports

Following the goals of a circular economy, the growth of both plastic consumption and prosumer 3-D printing are driving an interest in producing 3-D printer filament from waste plastic. However, traditional recycling can have a significant environmental impact as it demands the collection and transportation of relatively low-density waste plastics to collection centers and reclamation facilities for separation and reconstruction. Compared to the traditional recycling, distributed recycling (where consumers directly recycle their own waste) has the potential to reduce energy consumption because it can save the energy for transportation needed in conventional recycling. A promising method of such distributed plastic …


Molecular Modeling Of Aerospace Polymer Matrices Including Carbon Nanotube-Enhanced Epoxy, Matthew Radue Jan 2017

Molecular Modeling Of Aerospace Polymer Matrices Including Carbon Nanotube-Enhanced Epoxy, Matthew Radue

Dissertations, Master's Theses and Master's Reports

Carbon fiber (CF) composites are increasingly replacing metals used in major structural parts of aircraft, spacecraft, and automobiles. The current limitations of carbon fiber composites are addressed through computational material design by modeling the salient aerospace matrix materials. Molecular Dynamics (MD) models of epoxies with and without carbon nanotube (CNT) reinforcement and models of pure bismaleimides (BMIs) were developed to elucidate structure-property relationships for improved selection and tailoring of matrices.

The influence of monomer functionality on the mechanical properties of epoxies is studied using the Reax Force Field (ReaxFF). From deformation simulations, the Young’s modulus, yield point, and Poisson’s ratio …


Multiscale Modeling: Thermal Conductivity Of Graphene/Cycloaliphatic Epoxy Composites, Sorayot Chinkanjanarot Jan 2017

Multiscale Modeling: Thermal Conductivity Of Graphene/Cycloaliphatic Epoxy Composites, Sorayot Chinkanjanarot

Dissertations, Master's Theses and Master's Reports

The thermal property of epoxy as the binder in the Carbon Fiber (CF) composites, especially thermal conductivity is important to achieve the advance technology and to improve the performance of materials. Multiscale modeling including molecular dynamic (MD) modeling and micromechanical modeling is used to study the properties of neat Cycloaliphatic Epoxies (CE) and Graphene nanoplatelet (GNP)/CE with and without covalent functionalization.

The thermal properties (glass-transition temperature, thermal expansion coefficient, and thermal conductivity) and mechanical properties of CE system are investigated by MD modeling using OPLS-All Atom force field. A unique crosslinking technique is developed to achieve the cured CE models …


Design Of Robust Hydrogel Based On Mussel-Inspired Chemistry, Yuan Liu Jan 2017

Design Of Robust Hydrogel Based On Mussel-Inspired Chemistry, Yuan Liu

Dissertations, Master's Theses and Master's Reports

The structure of catechol is found in mussel adhesive proteins and contributed to both wet-resistant adhesion and cohesive curing of these proteins. A synthetic nano-silicate, Laponite was incorporated into catechol-containing hydrogels and the hydrogel network-bound catechol formed strong reversible interfacial interaction with Laponite. The contribution of incorporated catechol-Laponite reversible interfacial interactions to the mechanics of hydrogels constructed by different strategies was studied. In the first strategy, Laponite and catechol were introduced into the double network hydrogel (DN) via the free radical co-polymerization of a catechol-containing monomer, backbone monomer, and crosslinker. The introduction of catechol-Laponite interactions significantly improved the compressive strength …


Electro-Optic Contact Poling Of Polymer Waveguide Devices And Thin Films, Michael Briseno Jan 2017

Electro-Optic Contact Poling Of Polymer Waveguide Devices And Thin Films, Michael Briseno

Dissertations, Master's Theses and Master's Reports

Optical communication is a high speed, large bandwidth, low cost, and power efficient method of transferring data over short-haul and long-haul channels. Optical communication requires devices (optical modulators) that utilize the originating electrical signal information to modulate a corresponding optical signal. State of the art optical modulators can be used for communicating signals at modulation frequencies up to 100 GHz and faster. Polymer modulators are used over lithium niobate due to the large potential electro-optic coefficient, which has been shown to be as high as 226 pm/V in thin films.

Organic electro-optic polymers used in thin film modulators contain nonlinear …


A 3d Biomimetic Scaffold Using Electrospinning For Tissue Engineering Applications, Samerender Nagam Hanumantharao Jan 2017

A 3d Biomimetic Scaffold Using Electrospinning For Tissue Engineering Applications, Samerender Nagam Hanumantharao

Dissertations, Master's Theses and Master's Reports

Electrospinning holds great promise for designing functional 3D biomimetic scaffolds for tissue engineering applications. The technique allows for the reproducible fabrication of 3D scaffolds with control over the porosity and thickness. In this work, a novel method for the synthesis of a 3D electroactive scaffold using electrospinning from polycaprolactone (PCL), Polyvinylidene Fluoride (PVDF) and Polyaniline (PANI) is reported. Additional scaffolds involving different morphologies of PCL, PCL-PVDF and PCL-PANI-PVDF were also fabricated and evaluated. The scaffolds were characterized using electron microscopy to visualize the morphologies. Infrared spectroscopy was used to confirm the presence of polymers and their respective phases in the …