Open Access. Powered by Scholars. Published by Universities.®

Polymer and Organic Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Polymer and Organic Materials

Nature-Inspired Material Strategies Towards Functional Devices, Sayantan Pradhan Jan 2021

Nature-Inspired Material Strategies Towards Functional Devices, Sayantan Pradhan

Theses and Dissertations

Naturally sourced, renewable biomaterials possess outstanding advantages for a multitude of biomedical applications owing to their biodegradability, biocompatibility, and excellent mechanical properties. Of interest in this dissertation are silk (protein) and chitin (polysaccharide) biopolymers for the fabrication of functional biodevices. One of the major challenges restricting these materials beyond their traditional usage as passive substrate materials is the ability to combine them with high-resolution fabrication techniques. Initial research work is directed towards the fabrication of micropatterned, flexible 2D substrates of silk fibroin and chitin using bench-top photolithographic techniques. Research is focused on imparting electrochemical properties to silk proteins using conducting …


Fabrication Of Flexible, Biofunctional Architectures From Silk Proteins, Ramendra K. Pal Jan 2017

Fabrication Of Flexible, Biofunctional Architectures From Silk Proteins, Ramendra K. Pal

Theses and Dissertations

Advances in the biomedical field require functional materials and processes that can lead to devices that are biocompatible, and biodegradable while maintaining high performance and mechanical conformability. In this context, a current shift in focus is towards natural polymers as not only the structural but also functional components of such devices. This poses material-specific functionalization and fabrication related questions in the design and fabrication of such systems. Silk protein biopolymers from the silkworm show tremendous promise in this regard due to intrinsic properties: mechanical performance, optical transparency, biocompatibility, biodegradability, processability, and the ability to entrap and stabilize biomolecules. The unique …


Artificial Alveolar-Capillary Membrane On A Microchip, Keith Male Jun 2012

Artificial Alveolar-Capillary Membrane On A Microchip, Keith Male

Materials Engineering

A microfluidic device was synthesized out of polydimethyl siloxane (PDMS) to simulate the structure of the alveolar-capillary interface of the human lung. Soft lithography techniques were used to build a mold structure out of SU-8 epoxy at heights ranging from 30µm to 110 µm on a silicon substrate, with the 70 µm structure working the best. A mixture of 10:1 Sylgard 184 elastomer was then cast using the mold, and cured at a temperature of 80oC. For the porous membrane, the PDMS was spun on at 6000rpm for 30 seconds using a spin coater to produce a membrane …