Open Access. Powered by Scholars. Published by Universities.®

Polymer and Organic Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Polymer and Organic Materials

Polymer Nanocomposites Containing High Aspect Ratio Particulates: Innovation In Co-Extruded Multilayer Barrier Films, Kevin Meyers May 2018

Polymer Nanocomposites Containing High Aspect Ratio Particulates: Innovation In Co-Extruded Multilayer Barrier Films, Kevin Meyers

Dissertations

Delaminated montmorillonite (MMT) clay/ maleic anhydride grafted LLDPE nanocomposite multilayer films with alternating layers of LDPE were produced through multilayer co-extrusion. The MMT concentration within the nanocomposite layers was increased through annealing the films in the melt due to a mismatch in interdiffusion rates of the polymer layers. Analysis of the nanocomposite layers upon annealing revealed that the platelets impinged upon one another resulting in significant improvement in oxygen barrier in the multilayer system, exceeding the results of bulk nanocomposites.

Model analysis demonstrated that increasing the nanoplatelet aspect ratio or initial concentration in the filled layers would lead to even …


Surfactant Driven Assembly Of Freeze-Casted, Polymer-Derived Ceramic Nanoparticles On Grapehene Oxide Sheets For Lithium-Ion Battery Anodes, Ali Zein Khater Jan 2018

Surfactant Driven Assembly Of Freeze-Casted, Polymer-Derived Ceramic Nanoparticles On Grapehene Oxide Sheets For Lithium-Ion Battery Anodes, Ali Zein Khater

Honors Undergraduate Theses

Traditional Lithium-Ion Batteries (LIBs) are a reliable and cost-efficient choice for energy storage. LIBs offer high energy density and low self-discharge. Recent developments in electric-based technologies push for replacing historically used Lead-Acid batteries with LIBs. However, LIBs do not yet meet the demands of modern technology. Silicon and graphene oxide (GO) have been identified as promising replacements to improve anode materials. Graphene oxide has a unique sheet-like structure that provides a mechanically stable, light weight material for LIB anodes. Due to its structure, reduced graphene oxide (rGO) is efficiently conductive and resistive to environmental changes. On the other hand, silicon-based …