Open Access. Powered by Scholars. Published by Universities.®

Polymer and Organic Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

2016

Discipline
Institution
Keyword
Publication

Articles 1 - 30 of 62

Full-Text Articles in Polymer and Organic Materials

Structure And Properties Of Cnt Yarns And Cnt/Cnf Reinforced Pan-Based Carbon Fibers, Nitilaksha Phalaxayya Hiremath Dec 2016

Structure And Properties Of Cnt Yarns And Cnt/Cnf Reinforced Pan-Based Carbon Fibers, Nitilaksha Phalaxayya Hiremath

Doctoral Dissertations

There is continuing effort to enhance the strength and modulus of carbon fibers by various combinations of materials and processing. Carbon fibers are produced from various precursors, and the strength of the CFs are directly related to the type of precursor used to make them. Carbon Nanotubes (CNTs) have received a great deal of attention due to their unique structure and properties. Major focus of this research is on the evaluation of processing, structure and properties of CNT based yarns and composite fibers.

High strength and low cost carbon fibers (CFs) are needed for today’s applicatio ns. A low cost …


Strategies For Controlling Bulk Heterojunction Morphology, Zach Daniel Seibers Dec 2016

Strategies For Controlling Bulk Heterojunction Morphology, Zach Daniel Seibers

Doctoral Dissertations

Organic photovoltaic devices have been extensively studied as a means to produce sustainable energy. However, the performance of organic-photovoltaic (OPV) devices is dependent upon a number of factors including the morphology of the active layer, device architecture, and processing conditions. Recent research has indicated that fullerenes in the bulk heterojunction are entropically driven to the silicon and air interfaces upon crystallization of P3HT, which occurs during thermal annealing. The first chapter of this research focuses on investigating the structure and function of end-tethered poly(3-hexylthiophene) chains to a transparent electrode as an anode buffer layer. Neutron reactivity reveals that these P3HT …


The Effect Of Process Parameters And Surface Condition On Bond Strength Between Additively Manufactured Components And Polymer Substrates, Bharat Bhushan Chivukula Dec 2016

The Effect Of Process Parameters And Surface Condition On Bond Strength Between Additively Manufactured Components And Polymer Substrates, Bharat Bhushan Chivukula

Graduate Theses and Dissertations

Additive patching is a process in which printers with multiple axes deposit molten material onto a pre-defined surface to form a bond. Studying the effect of surface roughness and process parameters selected for printing auxiliary part on the bond helps in improving the strength of the final component. Particularly, the influence of surface roughness, as established by adhesion theory, has not been evaluated in the framework of additive manufacturing (AM). A full factorial design of experiments with five replications was conducted on two levels and three factors, viz., layer thickness, surface roughness, and raster angle to examine the underlying effects …


Interactive Physics And Characteristics Of Photons And Photoelectrons In Hyperbranched Zinc Oxide Nanostructures, Garrett Edward Torix Dec 2016

Interactive Physics And Characteristics Of Photons And Photoelectrons In Hyperbranched Zinc Oxide Nanostructures, Garrett Edward Torix

Graduate Theses and Dissertations

As is commonly known, the world is full of technological wonders, where a multitude of electronic devices and instruments continuously help push the boundaries of scientific knowledge and discovery. These new devices and instruments of science must be utilized at peak efficiency in order to benefit humanity with the most advanced scientific knowledge. In order to attain this level of efficiency, the materials which make up these electronics, or possibly more important, the fundamental characteristics of these materials, must be fully understood. The following research attempted to uncover the properties and characteristics of a selected family of materials. Herein, zinc …


A Multi-Channel 3d-Printed Bioreactor For Evaluation Of Growth And Production In The Microalga Dunaliella Sp, Cristian A. Cox Dec 2016

A Multi-Channel 3d-Printed Bioreactor For Evaluation Of Growth And Production In The Microalga Dunaliella Sp, Cristian A. Cox

Electronic Theses and Dissertations

We explored the capabilities of additive manufacturing using a photo-cured jetted material 3D printer to manufacture a milli-microfluidic device with direct application in microalgae Dunaliella sp growth and intracellular compounds biosynthesis tests. A continuous microbioreactor for microalgae culture was CAD designed and successfully built in 1 hour and 49 minutes using black photopolymer cured by UV and a support material. The microreactor was made up of 2 parts including the bioreactor itself and a microchannel network for culture media fluids and microalgae. Both parts were assembled to form a single unit. Additional optical and auxiliar components were added. An external …


Development Of Lignin Carbon Fiber And Reinforced Composites, Nathan Kieran Meek Dec 2016

Development Of Lignin Carbon Fiber And Reinforced Composites, Nathan Kieran Meek

Masters Theses

The aim of this work is to develop lignin carbon fiber for composite applications. This included mechanical testing of single lignin carbon fiber (LCF), interfacial shear strength determination for LCF-resin systems using single fiber fragmentation, x-ray diffraction for the evaluation of microstructural parameters, and finally composite manufacturing and testing. Through these focused areas of analysis, the carbon fiber is thoroughly characterized and composite performance is evaluated. This effort was a collaboration with the Center for Renewable Carbon (CRC) and the Civil and Environmental Engineering Department. LCF produced by the CRC resulted in fibers having tensile strength of 250-800 MPa and …


Structure-Property Relationships Of Polyisobutylene-Block-Polyamide Thermoplastic Elastomers, Morgan Dunn Heskett Dec 2016

Structure-Property Relationships Of Polyisobutylene-Block-Polyamide Thermoplastic Elastomers, Morgan Dunn Heskett

Master's Theses

Thermoplastic elastomers (TPEs) are a class of polymer fit for a wide variety of applications due to their customizability. In the synthesis of these types of materials, an elastically-performing polymer, deemed the “soft block,” is combined with a stiffer “hard block” polymer, each of which can be selected based on their own specific properties in order to achieve desired material behavior in the final copolymer. Recently, the use of polyisobutylene as a soft block in combination with a polyamide hard block has been investigated for use in TPE synthesis. While the material showed some promising behavior, many properties were still …


Design And Synthesis Of Dynamic Covalent Polymer Scaffolds With Controlled Architectures, Emily Annette Hoff Dec 2016

Design And Synthesis Of Dynamic Covalent Polymer Scaffolds With Controlled Architectures, Emily Annette Hoff

Dissertations

The design and synthesis of functional, controlled polymer architectures is essential to the development of new materials with precise and tailorable properties or applications. The work described in this dissertation focuses on the development of controlled polymer architectures with dynamic linkages for the design of multifunctional materials and surfaces via robust, efficient, and stimuli-responsive strategies.

In Chapter III, a post-polymerization modification strategy based on ambient temperature nucleophilic chemical deblocking of polymer scaffolds bearing N-heterocycle blocked isocyanate moieties is reported. Room temperature RAFT polymerization of three azole-N-carboxamide methacrylates, including 3,5-dimethyl pyrazole, imidazole, and 1,2,4-triazole derivatives, afforded reactive polymer scaffolds …


Nanostructured Morphologies In Glassy Polymer Networks, Brian Greenhoe Dec 2016

Nanostructured Morphologies In Glassy Polymer Networks, Brian Greenhoe

Dissertations

The body of this work describes a novel approach for the dispersion of multi-walled carbon nanotubes in a high Tg epoxy prepolymer matrix using a twin screw high-shear continuous reactor. The method demonstrated improves on previous dispersion methods in several ways. It offers increased efficiency through excellent heat transfer, while being solvent-less, scale-able, and tailorable to drive dispersion states to judiciously chosen dispersion states. Furthermore, it was shown that dispersion state and agglomerate morphology can be directed, in several ways, through processing conditions and also by controlling the matrix viscosity profile through cure. Broadband dielectric spectroscopy, optical hot-stage microscopy, …


Lignin Maximization: Analyzing The Impact Of Different Feedstocks And Feedstock Ratios Using Organosolv Fractionation, Marc Banholzer Dec 2016

Lignin Maximization: Analyzing The Impact Of Different Feedstocks And Feedstock Ratios Using Organosolv Fractionation, Marc Banholzer

Masters Theses

Over-exploitation of fossil fuels coupled with increasing pressure to reduce carbon emissions are prompting a transition from conventional petrochemical feedstocks to sustainable and renewable sourced carbon. The use of lignocellulosic biomass as a feedstock for integrated biorefining is of current high interest, as separation into its component parts affords process streams of cellulose, hemicellulose and lignin, each of which can serve as a starting point for the production of biobased chemicals and fuels. Given the large number of potential sources of lignocellulosic feedstocks, the biorefinery will need to adapt to the supplies available over a normal growing season. Of particular …


Nanoscience At Interfaces And Surfaces: From Jamming To Electrode Texturing, Mengmeng Cui Nov 2016

Nanoscience At Interfaces And Surfaces: From Jamming To Electrode Texturing, Mengmeng Cui

Doctoral Dissertations

This dissertation focuses on the nanoparticle self-assembly on the liquid/liquid interface and the nanomaterial modification on surface. The self-assembly of nanoparticles at the liquid/liquid interface was utilized to trap non-equilibrium morphology when the nanoparticles reach jamming state. The dynamics of jammed systems were further studied by X-ray photon correlation spectroscopy. For the surface part, the nanomaterials were modified on the electrodes to improve the performance of microbial electrosynthesis. Also, a novel and simple method was developed to prepare nanomaterials including nanoparticle surfactants and carbon nanotubes (CNTs).


Evaporation Induced Self-Assembly And Characterization Of Nanoparticulate Films: A New Route To Bulk Heterojunctions, Yipeng Yang Nov 2016

Evaporation Induced Self-Assembly And Characterization Of Nanoparticulate Films: A New Route To Bulk Heterojunctions, Yipeng Yang

Doctoral Dissertations

Polymer-based semiconducting materials are promising candidates for large-scale, low-cost photovoltaic devices. To date, the efficiency of these devices has been low in part because of the challenge of optimizing molecular packing while also obtaining a bicontinuous structure with a characteristic length comparable to the exciton diffusion length of 10 to 20 nm. In this dissertation we developed an innovative evaporation-induced nanoparticle self-assembly technique, which could be an effective approach to fabricate uniform, densely packed, smooth thin films with cm-scale area from home-made P3HT nanoparticles. Unlike the previous reports of nanoparticle-based film formation, we use a mixture of two solvents so …


Biopolymer Electrospun Nanofiber Mats To Inactivate And Remove Bacteria, Katrina Ann Rieger Nov 2016

Biopolymer Electrospun Nanofiber Mats To Inactivate And Remove Bacteria, Katrina Ann Rieger

Doctoral Dissertations

The persistence of antibiotic resistance in bacterial pathogens remains a primary concern for immunocompromised and critically-ill hospital patients. Hospital associated infections can be deadly and reduce the successes of medical advancements, such as, cancer therapies and medical implants. Thus, it is imperative to develop materials that can (i) deliver new antibiotics with accuracy, as well as (ii) uptake pathogenic microbes. In this work, we will demonstrate that electrospun nanofiber mats offer a promising platform for both of these objectives because of their high surface-to-volume ratio, interconnected high porosity, gas permeability, and ability to contour to virtually any surface. To provide …


Engineering Polymers Through Impact Modification And Superheated Liquid Processing, Gregory Connor Evans Nov 2016

Engineering Polymers Through Impact Modification And Superheated Liquid Processing, Gregory Connor Evans

Doctoral Dissertations

A new approach to toughen anionically polymerized polyamide 6 (aPA6) was applied using reaction induced phase separation (RIPS). This method solved issues with particle dispersion, mixture viscosity, and additive concentration common with conventional rubber toughening thereby making it an ideal candidate for fiber reinforced aPA6 reaction injection molding (RIM). Octamethylcyclotetrasiloxane (D4) was used as a functional additive that undergoes RIPS during aPA6 polymerization and polymerizes to polydimethylsiloxane (PDMS). Controlled phase separation, modulus retention, and increased crystallinity were achieved at low additive concentrations. Optimal properties were achieved with 2 wt% D4. Fracture energy was measured at high …


Polymer And Small Molecule Designs For Anion Conducting Membranes: Connected Ion-Channel Morphologies And Highly Alkaline Stable Ammonium Cations, Sedef P. Ertem Nov 2016

Polymer And Small Molecule Designs For Anion Conducting Membranes: Connected Ion-Channel Morphologies And Highly Alkaline Stable Ammonium Cations, Sedef P. Ertem

Doctoral Dissertations

Fuel cells are one of the oldest sustainable energy generation devices, converting chemical energy into electrical energy via reverse-electrolysis reactions. With the rapid development of polymer science, solid polymer electrolyte (SPE) membranes replaced the conventional liquid ion transport media, rendering low-temperature fuel cells more accessible for applications in portable electronics and transportation. However, SPE fuel cells are still far from commercialization due to high operation cost, and insufficient lifetime and performance limitations. Anion exchange membrane fuel cells (AEMFCs) are inexpensive alternatives to current proton exchange membrane fuel cell (PEMFC) technology, which relies on utilizing expensive noble-metal catalysts and perfluorinated SPE …


Cold Gas Dynamic Spray – Characterization Of Polymeric Deposition, Trenton Bush Nov 2016

Cold Gas Dynamic Spray – Characterization Of Polymeric Deposition, Trenton Bush

Masters Theses

When a solid, ductile particle impacts a substrate at sufficient velocity, the resulting heat, pressure, and plastic deformation can produce bonding at the interface. The use of a supersonic gas flow to accelerate such particles is known as Cold Spray deposition. The Cold Spray process has been commercialized for some metallic materials, but further research is required to unlock the exciting material properties possible with polymeric compounds. In this work, a combined computational and experimental study a) simulated and optimized the nozzle flow conditions necessary to produce bonding in a polyethylene particle, b) developed and fabricated an experimental device, and …


Molecular Tetrapods For Optoelectronic Applications, Jianzhong Yang Nov 2016

Molecular Tetrapods For Optoelectronic Applications, Jianzhong Yang

Chemistry and Chemical Biology ETDs

In this dissertation, several molecular tetrapods were synthesized for optoelectronic applications. In the first two sections, two tetrapodal breakwater-like small molecules: SO and SFBTD were synthesized and characterized. Absorption, X-ray scattering and differential scanning calorimetry experiments indicate crystalline nature of these compounds but slow crystallization kinetics. Solar cells employing SO or SFBTD and phenyl-C61-butyric acid methyl ester (PCBM) were fabricated and evaluated. Relatively low performance was obtained mainly due to the lack of appropriate phase separation, which was caused by molecularly mixed blends with PCBM. The molecularly mixed blends is the result of slow crystallization …


Plasticized Polymer Coatings For Sh-Saw Sensors For High Sensitivity And Long-Term Monitoring Of Btex Analytes In Liquid Phase, Pintu Adhikari Oct 2016

Plasticized Polymer Coatings For Sh-Saw Sensors For High Sensitivity And Long-Term Monitoring Of Btex Analytes In Liquid Phase, Pintu Adhikari

Master's Theses (2009 -)

BTEX compounds (benzene, toluene, ethylbenzene, and xylene) are constituents of crude oil and hazardous to human health. Among them, benzene has the lowest maximum contaminant level for drinking water because of its carcinogenicity. Spills or leakage from underground storage tanks or hazardous waste sites can contaminate nearby groundwater with these volatile organic compounds. Therefore, it is very important to detect the presence of BTEX contamination as early as possible in order to start the remediation process and maintain a healthy environment. To develop an in-situ continuous monitoring sensor system, shear horizontal surface acoustic wave (SH-SAW) sensor devices are being investigated …


Fabrication Of Large Mechanically Flexible Multi-Layered Pdms Optical Devices, Robert S. Green Sep 2016

Fabrication Of Large Mechanically Flexible Multi-Layered Pdms Optical Devices, Robert S. Green

Electronic Thesis and Dissertation Repository

Mechanically flexible large area polydimethylsiloxane (PDMS) optical devices are fabricated using soft-lithography techniques based on replica moulding. These non-rigid optical devices can be designed as sheets to act as either light concentrators (collectors) or diffusers (illuminators) based on the position and geometry of micro-optical structures (MOSs) embedded within the sheet or imprinted on its surface. The active surface area of the device can range from less than a sq. cm to several sq. m. The performance of the large area optical device is a function of the location and geometry of micro-optical structures, thickness and shape of the flexible waveguide, …


Degradation Of Carbon Fiber Reinforced Polymer And Graphite By Laser Heating, Nicholas C. Herr Sep 2016

Degradation Of Carbon Fiber Reinforced Polymer And Graphite By Laser Heating, Nicholas C. Herr

Theses and Dissertations

The availability of high power, diode pumped solid state and fiber lasers at powers 10 kW and shorter wavelengths (1.07 micrometer) has invigorated the development of tactical laser weapons. This shift to tactical missions greatly increases the variety of potential targets including carbon fiber reinforced polymers and related materials. The complexity of laser-material interactions has driven a historical reliance on live-fire testing and empirical models, but this becomes more difficult as the number of target materials grow. This dissertation combines thermal imagery and existing thermal models of the fire response of composite materials to develop a hybrid modeling approach of …


Catalytic Conversion Of Fructose, Glucose And Industrial Grade Sugar Syrups To 5-Hydroxymethylfurfural, A Platform For Fuels And Chemicals, Sadra Souzanchi Aug 2016

Catalytic Conversion Of Fructose, Glucose And Industrial Grade Sugar Syrups To 5-Hydroxymethylfurfural, A Platform For Fuels And Chemicals, Sadra Souzanchi

Electronic Thesis and Dissertation Repository

5-hydroxymethylfurfural (HMF) as a versatile and polyfunctional compound derived from dehydration of biomass has attracted increasing attentions in research over the past decades. HMF is an important intermediate and platform chemical, which can be converted into different useful chemicals as well as the promising biofuels. It can be obtained from acid-catalyzed dehydration of different C6-based carbohydrates such as glucose, fructose, sucrose and cellulose.

In this thesis, a cost-effective process for catalytic conversion of simple sugars (particularly glucose and fructose) and industrial grade sugar syrups to HMF was studied in a novel biphasic continuous-flow tubular reactor using inexpensive heterogeneous …


Silk As A Biomaterial Paste For Biomimetic Composite, Sang Hyun Park Aug 2016

Silk As A Biomaterial Paste For Biomimetic Composite, Sang Hyun Park

McKelvey School of Engineering Theses & Dissertations

Silk is a highly promising biomaterial with unique bio-physicochemical properties, such as excellent mechanical and optical properties, biocompatibility and programmable biodegradability. Among many different types, silk from domesticated silkworm, bombyx mori has received wide attention owing to its availability in virtually unlimited quantities and ease of extraction. In this study, we investigated silkworm silk as a protein glue to realize nacre-like composites. We have employed spin assisted layer-by-layer technique to fabricate ultrathin free-standing biocomposite films. Two different composites have been studied: (i) graphene oxide (GO)/silk and (ii) chitin/silk. From our prior work, it is known that the adsorption of amphiphilic …


Development Of Eco-Friendly Composite Foam Boards For Thermal Insulation And Packaging Purposes Using Cellulose Nanofibrils (Cnf), Nadir Yildirim Aug 2016

Development Of Eco-Friendly Composite Foam Boards For Thermal Insulation And Packaging Purposes Using Cellulose Nanofibrils (Cnf), Nadir Yildirim

Electronic Theses and Dissertations

Reducing energy consumption is a high priority in the United States and throughout the world. Energy used to heat and cool occupied constructed facilities is of particular concern, and one of the most effective strategies is insulating the building envelope. Historically, builders used whatever material was available to fill the void between interior and exterior walls, including wool fibers, paper, and even corn cobs. Today, homes are built using foam insulation that harden when applied, blown-in loose insulation, fiberglass mats or rigid foam boards usually composed of polystyrene. Rigid foam boards are used in a variety of applications despite the …


Studies On Nanocomposite Coating Produced By Laser-Assisted Process To Prevent Silicone Hydrogels From Bio-Fouling, Vishnuvardhana Wuppaladhodi Aug 2016

Studies On Nanocomposite Coating Produced By Laser-Assisted Process To Prevent Silicone Hydrogels From Bio-Fouling, Vishnuvardhana Wuppaladhodi

Electronic Thesis and Dissertation Repository

In this thesis, silver nanoparticles incorporated into polyvinylpyrrolidone (PVP) were deposited on silicone hydrogel to improve the hydrophilicity of the silicone hydrogel and prevent the growth of bacteria. Two different processes were employed to produce Ag nanoparticles: (1) Process-A is a photochemical reduction; (2) Process-B is laser ablation in liquid. Following that, MAPLE process was employed to deposit the Ag-PVP nanocomposites on the surface of silicone hydrogel. A solid-state pulsed laser (Nd:YAG) with a wavelength of 532 nm at a fluence of 50.4 mJ/cm2 was used in the MAPLE system to deposit Ag-PVP nanocomposite coating. Our results indicate that …


Interaction Between Charge-Transfer States Studied By Magnetic Field Effects, Mingxing Li Aug 2016

Interaction Between Charge-Transfer States Studied By Magnetic Field Effects, Mingxing Li

Doctoral Dissertations

Organic semiconducting materials, consisting mostly of carbon and hydrogen atoms, provide remarkable promise for electronic applications due to their easy processing, chemical tenability, low costs and environmental-friendly characteristics. For realizing electronic applications such as light emitting diodes and photovoltaic cells, charge-transfer states act as an important intermediate state for recombination and dissociation. Interestingly, magnetic field effects on semiconducting materials have been realized based on the suppression of spin mixing in the charge-transfer states. Although lots of studies have been carried out on investigating the properties of charge-transfer states, little has been done to consider the interaction between them. This thesis …


Exploring Thermoelectric Effect Based On Multi-Layer Conductor/Organic/Conductor Devices, Qing Liu Aug 2016

Exploring Thermoelectric Effect Based On Multi-Layer Conductor/Organic/Conductor Devices, Qing Liu

Doctoral Dissertations

Thermoelectric phenomena involve the simultaneous presence of both electrical and thermal currents. The entropy has been heavily used as the driving force to diffuse charge carriers between high and low temperature surfaces towards the development of Seebeck effects in thermoelectric devices. However, this driving force from entropy difference can cause an inverse relationship between Seebeck coefficient and electrical conductivity in the thermoelectric developments. Increasing the charge density can decrease the entropy difference to diffuse the charge carriers at a given temperature difference and lead to a decrease on the Seebeck coefficient developed by the entropy difference. Therefore, it is necessary …


Correlation Of Polymer Performance And Hansen Solubility Parameters, Daniel Jobse Mania Aug 2016

Correlation Of Polymer Performance And Hansen Solubility Parameters, Daniel Jobse Mania

Master's Theses

Ready-to-use (RTU) grout is becoming more important to the finish and remodeling construction industry. Market research shows it is a fast-growing product that not only is creating its own space, but is beginning to supplant existing technology.

The original intent of this research was to investigate formulation parameters and how they affect grout performance. It was learned that particle size and oil absorption (OA) value are important filler properties that affect performance as much as adequate packing density and optimal pigment volume concentration (PVC) without going beyond critical PVC (CPVC).

Polymer architecture was also determined to be extremely important, but …


Material Selection And Testing For A Radiation Therapy Catheter, Philip James Wadlow Aug 2016

Material Selection And Testing For A Radiation Therapy Catheter, Philip James Wadlow

Master's Theses

Three different polymers (a high-density polymer and two other polymers) were tested for use as an x-ray catheter in a radiation therapy application. This report describes the testing of these three materials to determine which material is the best option for a long use catheter. Tests included tensile, simulated clinical life, and other tests. Some testing was performed using nitrogen and an industrial coolant. Testing revealed significant non-circularities for some catheters. With increasing pressure, the circularity of these catheters increased. The tensile tests were performed on samples with varying doses of radiation. Tensile testing showed significant decreases in ultimate tensile …


Production Of Bio-Based Phenol Formaldehyde Foams, Bing Li Jul 2016

Production Of Bio-Based Phenol Formaldehyde Foams, Bing Li

Electronic Thesis and Dissertation Repository

Considering the declining non-renewable fossil resources, there is increasing interest in the development of more environmentally conscious, sustainable and cost-effective substitutes for chemical production. Lignin, a main component in lignocellulosic biomass, has been considered to be a potential substitute for petroleum-based phenol due to its phenolic structure.

This PhD dissertation aimed at producing bio-based phenol formaldehyde (BPF) foams using bio-phenols, including but not limited to, kraft lignin (KL), organosolv lignin (OL), hydrolysis lignin (HL), and bio-crude oil from white birth bark. The challenge of the existing process of producing BPF foams is that a low phenol substitution ratio, generally less …


Morphological And Material Effects In Van Der Waals Interactions, Jaime C. Hopkins Jul 2016

Morphological And Material Effects In Van Der Waals Interactions, Jaime C. Hopkins

Doctoral Dissertations

Van der Waals (vdW) interactions influence a variety of mesoscale phenomena, such as surface adhesion, friction, and colloid stability, and play increasingly important roles as science seeks to design systems on increasingly smaller length scales. Using the full Lifshitz continuum formulation, this thesis investigates the effects of system materials, shapes, and configurations and presents open-source software to accurately calculate vdW interactions. In the Lifshitz formulation, the microscopic composition of a material is represented by its bulk dielectric response. Small changes in a dielectric response can result in substantial variations in the strength of vdW interactions. However, the relationship between these …