Open Access. Powered by Scholars. Published by Universities.®

Polymer and Organic Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Polymer and Organic Materials

Effects Of Surface-Directed Spinodal Decomposition On Binary Thin-Film Morphology, Michael Brian Wise May 2018

Effects Of Surface-Directed Spinodal Decomposition On Binary Thin-Film Morphology, Michael Brian Wise

Graduate Theses and Dissertations

Preferential wetting can have a significant impact on the kinetics of phase separation in certain systems. The depletion of the wetting component can simply alter domain growth rates or change the structure entirely. In this thesis, we employ a Cahn-Hilliard model to study the evolution of binary thin-films with symmetric surface wetting. Three possible morphologies were identified: discrete, bicontinuous, and a novel quasi-2D bicontinuous structure in which both phases retain continuity throughout the volume as well as on the center xy plane. Using a continuity factor, regions of film thickness versus blend composition were classified as producing a certain morphology. …


Mesoscale Computational Studies Of Thin-Film Bijels, Joseph M. Carmack May 2018

Mesoscale Computational Studies Of Thin-Film Bijels, Joseph M. Carmack

Graduate Theses and Dissertations

Bijels are a relatively new class of soft materials that have many potential applications in the technology areas of energy, medicine, and environmental sustainability. They are formed by the arrest of binary liquid spinodal decomposition by a dispersion of solid colloidal nanoparticles. This dissertation presents an in-depth simulation study of Bijels constrained to thin-film geometries and in the presence of electric fields. We validate the computational model by comparing simulation results with previous computational modeling and experimental research. In the absence of suspended particles, we demonstrate that the model accurately captures the rich kinetics associated with diffusion-based surface-directed spinodal decomposition. …


Structure And Property Of Polymers And Biopolymers From Molecular Dynamic Simulations, Xiaoquan Sun May 2018

Structure And Property Of Polymers And Biopolymers From Molecular Dynamic Simulations, Xiaoquan Sun

Graduate Theses and Dissertations

Natural and synthetic polymers and biopolymers have been studied for a variety of applications in food emulsion, biopharmaceutical purification, tissue engineering, and biosensor. The structure and property of polymers and biopolymers are critically important to determine their functions. Molecular dynamics (MD) simulations have a unique advantage to explore the structure and property of polymers and biopolymers from the molecular level. In the dissertation, MD simulations were conducted to study the mechanisms of various biological and chemical processes controlled by polymers and biopolymers based on real-world experimental results.

Seven heptapeptides have been screened from a peptide library in our earlier study …


Phase Transitions In Monochalcogenide Monolayers, Mehrshad Mehboudi May 2018

Phase Transitions In Monochalcogenide Monolayers, Mehrshad Mehboudi

Graduate Theses and Dissertations

Since discovery of graphene in 2004 as a truly one-atom-thick material with extraordinary mechanical and electronic properties, researchers successfully predicted and synthesized many other two-dimensional materials such as transition metal dichalcogenides (TMDCs) and monochalcogenide monolayers (MMs). Graphene has a non-degenerate structural ground state that is key to its stability at room temperature. However, group IV monochalcogenides such as monolayers of SnSe, and GeSe have a fourfold degenerate ground state. This degeneracy in ground state can lead to structural instability, disorder, and phase transition in finite temperature. The energy that is required to overcome from one degenerate ground state to another …


Self-Assembled Barium Titanate Nanoscale Films By Molecular Beam Epitaxy, Timothy Allen Morgan May 2018

Self-Assembled Barium Titanate Nanoscale Films By Molecular Beam Epitaxy, Timothy Allen Morgan

Graduate Theses and Dissertations

One challenge of investigating ferroelectrics at the nanoscale has been controlling the stoichiometry during growth. Historically, the growth of barium titanate (BaTiO3) by molecular beam epitaxy has relied on a growth technique called shuttered RHEED. Shuttered RHEED controls the stoichiometry of barium titanate through the precise deposition of alternating layers of BaO and TiO2. While this approach has achieved 1% control of stoichiometry, finding self-limiting mechanisms to lock-in stoichiometry has been the focus of the growth community. The Goldschmidt tolerance factor predicts an unstable perovskite when barium sits in the titanium lattice site. The BaO-TiO2 phase diagram predicts a low-solubility …