Open Access. Powered by Scholars. Published by Universities.®

Polymer and Organic Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Polymer and Organic Materials

Applied Machine Learning In Extrusion-Based Bioprinting, Shuyu Tian Jan 2021

Applied Machine Learning In Extrusion-Based Bioprinting, Shuyu Tian

Theses and Dissertations

Optimization of extrusion-based bioprinting (EBB) parameters have been systematically conducted through experimentation. However, the process is time and resource-intensive and not easily translatable across different laboratories. A machine learning (ML) approach to EBB parameter optimization can accelerate this process for laboratories across the field through training using data collected from published literature. In this work, regression-based and classification-based ML models were investigated for their abilities to predict printing outcomes of cell viability and filament diameter for cell-containing alginate and gelatin composite hydrogels. Regression-based models were investigated for their ability to predict suitable extrusion pressure given desired cell viability when keeping …


Impact Dynamics Of Surfactant-Laden Droplets On Non-Wettable Coatings, Amir Esmaeili Jan 2021

Impact Dynamics Of Surfactant-Laden Droplets On Non-Wettable Coatings, Amir Esmaeili

Theses and Dissertations

Owing to their excellent water repellency, non-wettable (superhydrophobic) coatings have gained tremendous attention in the past couple of decades. Alkyl ketene dimer (AKD), an inexpensive polymer frequently used in paper industry as a sizing agent, has shown potentials to become superhydrophobic. The formation of a porous structure after curing the solidified AKD for an extra-long time (4–6 days) results in superhydrophobicity, i.e., a static contact angle with water of >150° and a roll-off angle of <10°. In this work, a facile and low-cost method was used to turn the surface of AKD superhydrophobic in a very short period of time by briefly treating the coatings, obtained from isothermally heated molten AKD at 40 °C for 3 min, with ethanol. The resulting superhydrophobicity is due to the formation of porous, entangled irregular micro/nano textures that create air cushions on the surface leading to droplet state transition from Wenzel to Cassie. As a proof of concept, the same material was applied to the co-sputtered nickel-tungsten thin films, commonly used in micro/nano-electro-mechanical systems, to improve their hydrophobicity. According to the results, at least 20% increase was observed in the dynamic contact angles of the treated substrates.

In addition, this work presents a detailed high-speed imaging analysis of the influence of the molecular weight, concentration and ionic nature of surfactants on droplet …


Nature-Inspired Material Strategies Towards Functional Devices, Sayantan Pradhan Jan 2021

Nature-Inspired Material Strategies Towards Functional Devices, Sayantan Pradhan

Theses and Dissertations

Naturally sourced, renewable biomaterials possess outstanding advantages for a multitude of biomedical applications owing to their biodegradability, biocompatibility, and excellent mechanical properties. Of interest in this dissertation are silk (protein) and chitin (polysaccharide) biopolymers for the fabrication of functional biodevices. One of the major challenges restricting these materials beyond their traditional usage as passive substrate materials is the ability to combine them with high-resolution fabrication techniques. Initial research work is directed towards the fabrication of micropatterned, flexible 2D substrates of silk fibroin and chitin using bench-top photolithographic techniques. Research is focused on imparting electrochemical properties to silk proteins using conducting …