Open Access. Powered by Scholars. Published by Universities.®

Polymer and Organic Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Polymer and Organic Materials

Effects Of Additive Manufacturing Techniques On The Magnetocaloric Properties And Chemical Stability Of Lafexcoysi13-X-Y Alloys, Binyam Wodajo Jan 2022

Effects Of Additive Manufacturing Techniques On The Magnetocaloric Properties And Chemical Stability Of Lafexcoysi13-X-Y Alloys, Binyam Wodajo

Theses and Dissertations

Additive manufacturing (AM) is an emerging process to fabricate net shape, intricate, engineering components with minimal material waste; however, traditionally it has been largely applied to structural materials. AM of functional materials, such as magnetic materials, has received much less attention and the field is still in its infancy. To date, AM of magnetocaloric regenerators for magnetic refrigeration (an energy-efficient alternative to the conventional vapor-compression cooling technology), remains a challenge. There are several magnetic refrigerator device designs in existence today that are predicted to be highly energy-efficient, on condition that suitable working materials can be developed. This challenge in manufacturing …


Branched Chain Amino Acid Strain State Monitoring With Raman Spectroscopy And Plasmonic Bowtie Nanoantenna Devices For Early Disease Detection, Caroline A. Campbell Jan 2022

Branched Chain Amino Acid Strain State Monitoring With Raman Spectroscopy And Plasmonic Bowtie Nanoantenna Devices For Early Disease Detection, Caroline A. Campbell

Theses and Dissertations

This work centers on the development and the down-selection of nano-manufactured devices to be used in conjunction with Raman spectroscopy for probing a branched chain amino acid. The nano-manufactured devices integrate plasmonic nanoantennas for the purpose of amplifying molecular fingerprints, which are otherwise difficult to detect, through Surface Enhanced Raman Spectroscopy (SERS). Plasmonic nanostructures can be utilized for a variety of biomedical and biochemical applications to detect the characteristic fingerprint provided by Raman Spectroscopy. The nano-manufactured devices create an electric field that amplifies minute perturbations and raises the signal above background noise. This may provide a deeper understanding of signal …


Impact Dynamics Of Surfactant-Laden Droplets On Non-Wettable Coatings, Amir Esmaeili Jan 2021

Impact Dynamics Of Surfactant-Laden Droplets On Non-Wettable Coatings, Amir Esmaeili

Theses and Dissertations

Owing to their excellent water repellency, non-wettable (superhydrophobic) coatings have gained tremendous attention in the past couple of decades. Alkyl ketene dimer (AKD), an inexpensive polymer frequently used in paper industry as a sizing agent, has shown potentials to become superhydrophobic. The formation of a porous structure after curing the solidified AKD for an extra-long time (4–6 days) results in superhydrophobicity, i.e., a static contact angle with water of >150° and a roll-off angle of <10°. In this work, a facile and low-cost method was used to turn the surface of AKD superhydrophobic in a very short period of time by briefly treating the coatings, obtained from isothermally heated molten AKD at 40 °C for 3 min, with ethanol. The resulting superhydrophobicity is due to the formation of porous, entangled irregular micro/nano textures that create air cushions on the surface leading to droplet state transition from Wenzel to Cassie. As a proof of concept, the same material was applied to the co-sputtered nickel-tungsten thin films, commonly used in micro/nano-electro-mechanical systems, to improve their hydrophobicity. According to the results, at least 20% increase was observed in the dynamic contact angles of the treated substrates.

In addition, this work presents a detailed high-speed imaging analysis of the influence of the molecular weight, concentration and ionic nature of surfactants on droplet …


Development Of An Anatomically And Electrically Conductive Brain Phantom For Transcranial Magnetic Stimulation, Hamzah A. Magsood Jan 2020

Development Of An Anatomically And Electrically Conductive Brain Phantom For Transcranial Magnetic Stimulation, Hamzah A. Magsood

Theses and Dissertations

Transcranial Magnetic Stimulation (TMS) is a non-invasive technique for diagnostics, prognostic, and treatments of various neurological diseases. However, the lack of anatomically realistic brain phantoms has made the experimental verification of stimulation strength in the form of induced electric fields/voltages in the brain tissues an impediment to developing new TMS coils, stimulators, and treatment protocols. There are significant technological, safety, and ethical limitations to test the potential TMS treatment procedures or develop enhancements and refine them on humans or animals. This work aims to bridge the gap by introducing and developing an innovative manufacturing and fabrications process to produce a …


Consuming Digital Debris In The Plasticene, Stephen R. Parks Jan 2018

Consuming Digital Debris In The Plasticene, Stephen R. Parks

Theses and Dissertations

Claims of customization and control by socio-technical industries are altering the role of consumer and producer. These narratives are often misleading attempts to engage consumers with new forms of technology. By addressing capitalist intent, material, and the reproduction limits of 3-D printed objects’, I observe the aspirational promise of becoming a producer of my own belongings through new networks of production. I am interested in gaining a better understanding of the data consumed that perpetuates hyper-consumptive tendencies for new technological apparatuses. My role as a designer focuses on the resolution of not only the surface of the object through 3-D …


Power Maximization For Pyroelectric, Piezoelectric, And Hybrid Energy Harvesting, Murtadha A. Shaheen Jan 2016

Power Maximization For Pyroelectric, Piezoelectric, And Hybrid Energy Harvesting, Murtadha A. Shaheen

Theses and Dissertations

The goal of this dissertation consists of improving the efficiency of energy harvesting using pyroelectric and piezoelectric materials in a system by the proper characterization of electrical parameters, widening frequency, and coupling of both effects with the appropriate parameters.

A new simple stand-alone method of characterizing the impedance of a pyroelectric cell has been demonstrated. This method utilizes a Pyroelectric single pole low pass filter technique, PSLPF. Utilizing the properties of a PSLPF, where a known input voltage is applied and capacitance Cp and resistance Rp can be calculated at a frequency of 1 mHz to 1 Hz. …


Electrospinning Applications Air Filtration And Superhydrophobic Materials, Negar Ghochaghi, Adetoun Taiwo Jan 2014

Electrospinning Applications Air Filtration And Superhydrophobic Materials, Negar Ghochaghi, Adetoun Taiwo

Graduate Research Posters

Electrospinning is a widely applicable technique that generates non-woven fibers in the micro and nano range. In this project two of its applications are highlighted namely filtration media and enhancement of wettability. The first project demonstrates that electrospinning can be used to produce new fiber filtration media with controlled microstructure. The bimodal and unimodal orthogonal and random filters were made and characterized against their filtration efficiency and pressure drop. Figure of Merit (FOM) was also calculated and discussed. It is shown that the FOM increases when the electrospun fibers are arranged into alternating layers of aligned course and fine fibers. …