Open Access. Powered by Scholars. Published by Universities.®

Polymer and Organic Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Polymer and Organic Materials

Development Of High-Performing Polydimethylsiloxane-Based Membranes For Carbon Dioxide Separation, Tao Hong Dec 2017

Development Of High-Performing Polydimethylsiloxane-Based Membranes For Carbon Dioxide Separation, Tao Hong

Doctoral Dissertations

Membrane separation is highlighted as one of the most promising approaches to mitigate the excessive CO2 [carbon dioxide] emission, due to its significant reduction of energy cost compared with many conventional separation techniques. Unfortunately, the separation performance of current membranes does not meet the practical CO2/N2 [nitrogen] separation requirements. And due to the huge volume of industrial flue gas, membranes with exceptionally high permeability are needed for practical reasons.

Currently, the separation mechanism of most polymeric membranes is based on size-sieving. However, this method is not sufficient for CO2/N2 separations due to the …


Polyorganosiloxanes: Molecular Nanoparticles, Nanocomposites And Interfaces, Daniel H. Flagg Nov 2017

Polyorganosiloxanes: Molecular Nanoparticles, Nanocomposites And Interfaces, Daniel H. Flagg

Doctoral Dissertations

Five research projects described. First, a reproducible, lab-scale synthesis of MQ silicone copolymers is presented. MQ copolymers are commercially important materials that have been ignored by the academic community. One possible reason for this is the difficulty of controlling and reproducing the preparative copolymerizations that have been reported. A reproducible method for lab-scale preparation was developed that controls molecular weight by splitting the copolymerization into the discrete steps of sol growth from silicate precursor and end-capping by trimethylsiloxy groups. Characterization of MQ products implicates that they are composed of highly condensed, polycyclic structures. The MQ copolymers prepared in the first …


Hybrid Polymer Electrolyte For Lithium-Oxygen Battery Application, Amir Chamaani Oct 2017

Hybrid Polymer Electrolyte For Lithium-Oxygen Battery Application, Amir Chamaani

FIU Electronic Theses and Dissertations

The transition from fossil fuels to renewable resources has created more demand for energy storage devices. Lithium-oxygen (Li-O2) batteries have attracted much attention due to their high theoretical energy densities. They, however, are still in their infancy and several fundamental challenges remain to be addressed. Advanced analytical techniques have revealed that all components of a Li-O2 battery undergo undesirable degradation during discharge/charge cycling, contributing to reduced cyclability. Despite many attempts to minimize the anode and cathode degradation, the electrolyte remains as the leading cause for rapid capacity fading and poor cyclability in Li-O2 batteries. In this …


Usage Of Fomblin Y To Improve Water Repellence Of Surface Coatings, Shawn Pj Kirby, Jeffrey Alston, Andrew Guenthner Aug 2017

Usage Of Fomblin Y To Improve Water Repellence Of Surface Coatings, Shawn Pj Kirby, Jeffrey Alston, Andrew Guenthner

STAR Program Research Presentations

Fluoro-Decyl POSS (FDP) has shown strong potential as a water repellant surface coating. Additionally, Fomblin is a solvent believed to have the ability to control the crystallization of POSS compounds on surfaces. Controlling the crystallization is key to improving water repelling abilities of surfaces. Thus, dip coating FDP and Fomblin onto surfaces is being investigated for water repulsion, mechanical stability, and deposition feasibility. First, temperature dependence of solubility of Fluoro-Decyl POSS in Fomblin was tested using Dynamic Light Scattering. Relative water repelling abilities of different coatings were determined by measuring contact angle of surfaces with water. Coatings with and without …


Comparative Solubility Of Poss Compounds In Fomblin Y, Shawn Pj Kirby, Jeffrey Alston, Andrew Guenthner Aug 2017

Comparative Solubility Of Poss Compounds In Fomblin Y, Shawn Pj Kirby, Jeffrey Alston, Andrew Guenthner

STAR Program Research Presentations

Fluoro-Decyl POSS (FDP) has shown strong potential as a water repellant surface coating. Additionally, Fomblin is a solvent believed to have the ability to control the crystallization of POSS compounds on surfaces. Controlling the crystallization is key to improving water repelling abilities of surfaces. Thus, dip coating FDP and Fomblin onto surfaces is being investigated for water repulsion, mechanical stability, and deposition feasibility. However, in order for this to be successful, POSS must be soluble in Fomblin. Temperature dependence of solubility of Fluoro-Hexyl, Fluoro-Octyl, Fluoro-Decyl POSS in Fomblin was tested using Dynamic Light Scattering. The values were compared, and it …


Cellulose Reinforced Thermoplastic Composites By In-Situ Ring-Opening Polymerization, Shahab Kashani Rahimi Aug 2017

Cellulose Reinforced Thermoplastic Composites By In-Situ Ring-Opening Polymerization, Shahab Kashani Rahimi

Dissertations

Over the past two decades, the increasing concern about the negative environmental impacts of synthetic materials has led to rising interests in utilizing renewable natural resources to develop polymer materials with comparable properties and performance to their synthetic counterparts. One of the major fields of interest is polymer composites where the replacement of synthetic fibers with bio renewable natural fibers is of great potential. However, the processing difficulties, in terms of fiber dispersion and thermal stability have limited the application of cellulosic fibers to polymers with low processing temperatures which are mostly hydrophobic polymers. As a result, the true reinforcing …


Characterization Of Electronic And Ionic Transport In Soft And Hard Functional Materials, Lawrence A. Renna Jul 2017

Characterization Of Electronic And Ionic Transport In Soft And Hard Functional Materials, Lawrence A. Renna

Doctoral Dissertations

Control over concurrent transport of multiple carrier types is desired in both soft and hard materials. For both types of materials, I demonstrate ways to characterize and execute governance over both electronic and ionic transport, and apply these concepts in the fabrication of devices with applications in conducting composites, photovoltaics, electrochemical energy storage, and memristors. In soft materials, such as polymers, the topology of the binary polymer mesoscale morphology has major implications on the charge/ion transport. Traditional approaches to co-continuous structures involve either using blends of polymers or diblock copolymers. In polymer blends, the structures are kinetically trapped and …


Synthesis,Structure And Properties Of Ruthenium Polypyridyl Metalloligand Based Metal-Organic Frameworks, Mamatha Polapally Jul 2017

Synthesis,Structure And Properties Of Ruthenium Polypyridyl Metalloligand Based Metal-Organic Frameworks, Mamatha Polapally

Masters Theses & Specialist Projects

Metal-organic frameworks (MOFs) have been extensively studied because of their amazing applications in gas storage, purification, photocatalysis, chemical sensing, and imaging techniques. Ruthenium polypyridyl complexes have been broadly considered as photosensitizers for the conversion of solar energy and photoelectronic materials. With this aspect, we have synthesized three new ruthenium polypyridyl based MOFs ([Ru(H2bpc)Cu(bpc)(Hbpc)2(H2O)]·5H2O (1), [Ru(H2bpc)(Fe(bpc)(Hbpc)2(H2O)2]·6H2O (2) and [Ru(H2bpc)Ni(bpc)(Hbpc)2(H2O)2]·6H2O (3)) from ruthenium(III) chloride, bpc (2,2’- bipyridine-4,4’-dicarboxylic acid) ligand, and 3d M(II) metal ions (M(II)= Cu(II), Fe(II), Ni(II)). These MOFs were synthesized under hydro or solvothermal conditions by using water, ethanol or methanol as solvents. The crystal structures of the new compounds …


All Acrylic Based Thermoplastic Elastomers: Design And Synthesis For Improved Mechanical Performance, Wei Lu May 2017

All Acrylic Based Thermoplastic Elastomers: Design And Synthesis For Improved Mechanical Performance, Wei Lu

Doctoral Dissertations

Thermoplastic elastomers (TPEs) have been widely studied because of their recyclability, good processability, low production cost and distinct performance. Compared to the widely-used styrenic TPEs, acrylate based TPEs have potential advantages including exceptional chemical, heat, oxygen and UV resistance, optical transparence, and oil resistance. However, their high entanglement molecular weight lead to “disappointing” mechanical performance as compared to styrenic TPEs. The work described in this dissertation is aimed at employing various approaches to develop the all acrylic based thermoplastic elastomers with improved mechanical performance.

The first part of this work focuses on the introduction of acrylic polymers with high glass …


An Investigation Of The Use Of Cerium And Polyhedral Oligomeric Silsesquioxanes For The Protection Of Polymeric Epoxy Compounds In The Low Earth Orbit Environment, Jessica Miriam Piness May 2017

An Investigation Of The Use Of Cerium And Polyhedral Oligomeric Silsesquioxanes For The Protection Of Polymeric Epoxy Compounds In The Low Earth Orbit Environment, Jessica Miriam Piness

Dissertations

Low Earth orbit presents many hazards for composites including atomic oxygen, UV radiation, thermal cycling, micrometeoroids, and high energy protons. Atomic oxygen and vacuum ultraviolet radiation are of concern for space-bound polymeric materials as they degrade the polymers used as matrices for carbon fiber composites, which are used in satellites and space vehicles due to their high strength to weight ratios. Epoxy-amine thermosets comprise a common class of matrix due to processability and good thermal attributes. Polyhedral oligomeric silsesquioxanes (POSS) have shown the ability to reduce erosion in polyimides, polyurethanes, and other polymers when exposed to atomic oxygen. The POSS …


Effect Of Chain Rigidity On Network Architecture And Deformation Behavior Of Glassy Polymer Networks, Kyler Reser Knowles May 2017

Effect Of Chain Rigidity On Network Architecture And Deformation Behavior Of Glassy Polymer Networks, Kyler Reser Knowles

Dissertations

Processing carbon fiber composite laminates creates molecular-level strains in the thermoset matrix upon curing and cooling which can lead to failures such as geometry deformations, micro-cracking, and other issues. It is known strain creation is attributed to the significant volume and physical state changes undergone by the polymer matrix throughout the curing process, though storage and relaxation of cure-induced strains remain poorly understood. This dissertation establishes two approaches to address the issue. The first establishes testing methods to simultaneously measure key volumetric properties of a carbon fiber composite laminate and its polymer matrix. The second approach considers the rigidity of …