Open Access. Powered by Scholars. Published by Universities.®

Polymer and Organic Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Polymer and Organic Materials

Adaption Of Catechol And Reversible Addition-Fragmentation Chain-Transfer (Raft) Chemistries For Water-Based Applications, Olabode Oyeneye Dec 2017

Adaption Of Catechol And Reversible Addition-Fragmentation Chain-Transfer (Raft) Chemistries For Water-Based Applications, Olabode Oyeneye

Electronic Thesis and Dissertation Repository

Incorporating the binding chemistry of catechol functionality with RAFT chemistry offers a facile and simplified approach for developing a suite of new 2D and 3D hybrid materials with tailored morphologies. Leveraging both chemistries by synthesizing catechol-end functionalized RAFT agents and catechol-containing monomeric species for RAFT (co)polymerization, this dissertation examined a new series of advanced materials that were designed for water-based applications including model flocculants, thermoresponsive hydrogels, adsorbents and underwater adhesives.

To prepare the RAFT agents, novel trithiocarbonates with several catechol end R groups (as postpolymerization anchors) were synthesized that differ in their carbonyl α-substituents (Dopa-CTAs). These materials were evaluated for …


Spray-Dried Cellulose Nanofibril-Reinforced Polypropylene Composites For Extrusion-Based Additive Manufacturing, Lu Wang Dec 2017

Spray-Dried Cellulose Nanofibril-Reinforced Polypropylene Composites For Extrusion-Based Additive Manufacturing, Lu Wang

Electronic Theses and Dissertations

Compared to conventional manufacturing process, additive manufacturing (AM) offers free-form design, lighter and more ergonomic products, short lead time and less waste. Extrusion-based AM can be used to print thermoplastics. However, extrusion-based AM has processing challenges in printing semi-crystalline thermoplastics, for instance, polypropylene (PP). Cellulose nanofibrils (CNF) are one type of cellulose nanofibers that are produced from pulp fibers. CNF has extraordinary properties which make it an ideal candidate to reinforce polymers. Spray-dried CNF (SDCNF) is able to be incorporated into thermoplastic matrices without modifying conventional processing procedures.

The mechanical properties of 3D printed plastic parts have been considered significantly …


Cellulose Reinforced Thermoplastic Composites By In-Situ Ring-Opening Polymerization, Shahab Kashani Rahimi Aug 2017

Cellulose Reinforced Thermoplastic Composites By In-Situ Ring-Opening Polymerization, Shahab Kashani Rahimi

Dissertations

Over the past two decades, the increasing concern about the negative environmental impacts of synthetic materials has led to rising interests in utilizing renewable natural resources to develop polymer materials with comparable properties and performance to their synthetic counterparts. One of the major fields of interest is polymer composites where the replacement of synthetic fibers with bio renewable natural fibers is of great potential. However, the processing difficulties, in terms of fiber dispersion and thermal stability have limited the application of cellulosic fibers to polymers with low processing temperatures which are mostly hydrophobic polymers. As a result, the true reinforcing …


End-Capping Star-Like Polycaprolactone With Different Functional Groups And The Interaction With Smooth Muscle Cells, Qingya Zeng May 2017

End-Capping Star-Like Polycaprolactone With Different Functional Groups And The Interaction With Smooth Muscle Cells, Qingya Zeng

Masters Theses

Polycaprolactone (PCL) is a PDA-approved biodegradable polymer with excellent biocompatibility and flexibility. My work has been designed to find out how different functional end groups in star-like PCL samples affect the surface properties (such as hydrophilicity, morphology) and bulk properties (such as thermal, mechanical, rheological properties, and crystallization), and consequently the behavior and functions of primary rat aortic smooth muscle cells (SMCs).

I focused on the synthesis of PCL with different functional groups and their characterizations. In chapter 2, PCL samples with four or six hydroxyl end groups were synthesized with different molecular weights ranging from 8,000 to 30,000 g/mol …


Dual Mechanism For Toughening And Sustained Aminoglycoside Elution From A Polyphosphate Hydrogel, Dwight D. Lane, Russell J. Stewart Phd Feb 2017

Dual Mechanism For Toughening And Sustained Aminoglycoside Elution From A Polyphosphate Hydrogel, Dwight D. Lane, Russell J. Stewart Phd

Biomedical Engineering Western Regional Conference

No abstract provided.


Tunable Nanocomposite Membranes For Water Remediation And Separations, Sebastián Hernández Sierra Jan 2017

Tunable Nanocomposite Membranes For Water Remediation And Separations, Sebastián Hernández Sierra

Theses and Dissertations--Chemical and Materials Engineering

Nano-structured material fabrication using functionalized membranes with polyelectrolytes is a promising research field for water pollution, catalytic and mining applications. These responsive polymers react to external stimuli like temperature, pH, radiation, ionic strength or chemical composition. Such nanomaterials provide novel hybrid properties and can also be self-supported in addition to the membranes.

Polyelectrolytes (as hydrogels) have pH responsiveness. The hydrogel moieties gain or lose protons based on the pH, displaying swelling properties. These responsive materials can be exploited to synthesize metal nanoparticles in situ using their functional groups, or to immobilize other polyelectrolytes and biomolecules. Due to their properties, these …


A 3d Biomimetic Scaffold Using Electrospinning For Tissue Engineering Applications, Samerender Nagam Hanumantharao Jan 2017

A 3d Biomimetic Scaffold Using Electrospinning For Tissue Engineering Applications, Samerender Nagam Hanumantharao

Dissertations, Master's Theses and Master's Reports

Electrospinning holds great promise for designing functional 3D biomimetic scaffolds for tissue engineering applications. The technique allows for the reproducible fabrication of 3D scaffolds with control over the porosity and thickness. In this work, a novel method for the synthesis of a 3D electroactive scaffold using electrospinning from polycaprolactone (PCL), Polyvinylidene Fluoride (PVDF) and Polyaniline (PANI) is reported. Additional scaffolds involving different morphologies of PCL, PCL-PVDF and PCL-PANI-PVDF were also fabricated and evaluated. The scaffolds were characterized using electron microscopy to visualize the morphologies. Infrared spectroscopy was used to confirm the presence of polymers and their respective phases in the …


Fabrication Of Flexible, Biofunctional Architectures From Silk Proteins, Ramendra K. Pal Jan 2017

Fabrication Of Flexible, Biofunctional Architectures From Silk Proteins, Ramendra K. Pal

Theses and Dissertations

Advances in the biomedical field require functional materials and processes that can lead to devices that are biocompatible, and biodegradable while maintaining high performance and mechanical conformability. In this context, a current shift in focus is towards natural polymers as not only the structural but also functional components of such devices. This poses material-specific functionalization and fabrication related questions in the design and fabrication of such systems. Silk protein biopolymers from the silkworm show tremendous promise in this regard due to intrinsic properties: mechanical performance, optical transparency, biocompatibility, biodegradability, processability, and the ability to entrap and stabilize biomolecules. The unique …


Design Of Robust Hydrogel Based On Mussel-Inspired Chemistry, Yuan Liu Jan 2017

Design Of Robust Hydrogel Based On Mussel-Inspired Chemistry, Yuan Liu

Dissertations, Master's Theses and Master's Reports

The structure of catechol is found in mussel adhesive proteins and contributed to both wet-resistant adhesion and cohesive curing of these proteins. A synthetic nano-silicate, Laponite was incorporated into catechol-containing hydrogels and the hydrogel network-bound catechol formed strong reversible interfacial interaction with Laponite. The contribution of incorporated catechol-Laponite reversible interfacial interactions to the mechanics of hydrogels constructed by different strategies was studied. In the first strategy, Laponite and catechol were introduced into the double network hydrogel (DN) via the free radical co-polymerization of a catechol-containing monomer, backbone monomer, and crosslinker. The introduction of catechol-Laponite interactions significantly improved the compressive strength …


High Thermal Conductivity In Soft Elastomers With Elongated Liquid Metal Inclusions, Michael D. Bartlett, Navid Kazem, Matthew J. Powell-Palm, Xiaonan Huang, Wenhuan Sun, Jonathan A. Malen, Carmel Majidi Majidi Dec 2016

High Thermal Conductivity In Soft Elastomers With Elongated Liquid Metal Inclusions, Michael D. Bartlett, Navid Kazem, Matthew J. Powell-Palm, Xiaonan Huang, Wenhuan Sun, Jonathan A. Malen, Carmel Majidi Majidi

Michael Bartlett

Soft dielectric materials typically exhibit poor heat transfer properties due to the dynamics of phonon transport, which constrain thermal conductivity (k) to decrease monotonically with decreasing elastic modulus (E). This thermal−mechanical trade-off is limiting for wearable computing, soft robotics, and other emerging applications that require materials with both high thermal conductivity and low mechanical stiffness. Here, we overcome this constraint with an electrically insulating composite that exhibits an unprecedented combination of metal-like thermal conductivity, an elastic compliance similar to soft biological tissue (Young’s modulus < 100 kPa), and the capability to undergo extreme deformations (>600% strain). By incorporating liquid metal …