Open Access. Powered by Scholars. Published by Universities.®

Polymer and Organic Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences

Theses/Dissertations

Institution
Keyword
Publication Year
Publication

Articles 1 - 20 of 20

Full-Text Articles in Polymer and Organic Materials

Frontiers In The Self-Assembly Of Charged Macromolecules, Khatcher O. Margossian Oct 2022

Frontiers In The Self-Assembly Of Charged Macromolecules, Khatcher O. Margossian

Doctoral Dissertations

The self-assembly of charged macromolecules forms the basis of all life on earth. From the synthesis and replication of nucleic acids, to the association of DNA to chromatin, to the targeting of RNA to various cellular compartments, to the astonishingly consistent folding of proteins, all life depends on the physics of the organization and dynamics of charged polymers. In this dissertation, I address several of the newest challenges in the assembly of these types of materials. First, I describe the exciting new physics of the complexation between polyzwitterions and polyelectrolytes. These materials open new questions and possibilities within the context …


Additive Manufacturing Of Variable Contrast Computed Tomography Anatomical Phantoms Using A Single Feedstock In Fused Filament Fabrication, Cory J. Darling May 2022

Additive Manufacturing Of Variable Contrast Computed Tomography Anatomical Phantoms Using A Single Feedstock In Fused Filament Fabrication, Cory J. Darling

University of New Orleans Theses and Dissertations

Anatomical phantoms used in biomedical education and training benefit greatly from Fused filament fabrication’s (FFF) ability to rapidly produce complex and unique models. Current materials and methods used in FFF have limited ability to accurately produce phantoms that can mimic the radiological properties of multiple biological tissues. This research demonstrates that the CT contrast of FFF produced models can be modified by varying the concentration of bismuth oxide in acrylonitrile butadiene styrene (ABS) filaments and a tunable CT contrast that mimics the CT contrast ranging from fatty tissue to cortical bone using a single composite filament without introducing artificial image …


Development Of Biomaterials For Drug Delivery, Raquel De Castro May 2021

Development Of Biomaterials For Drug Delivery, Raquel De Castro

Graduate Theses and Dissertations

Drug delivery systems (DDS) have highly evolved in the last decades with the development of hydrogels and nanoparticles. However, high systemic uptake, side effects, low bioavailability, and encapsulation efficiency continue to be a major hurdle faced by such DDSs.

Nanoparticles and hydrogels can be specifically designed for targeted DDSs to mitigate some of the problems. This dissertation aimed to design two DDSs for ocular drug delivery and one for cancer treatment. The first project sought to develop chitosan nanoparticles (Cs-NP) using PEGDA as a copolymer to encapsulate gentamicin (GtS) for ocular drug delivery. Cs-NPs contain positive charges that can interact …


Development Of Light Actuated Chemical Delivery Platform On A 2-D Array Of Micropore Structure, Hojjat Rostami Azmand, Hojjat Rostami Azmand Jan 2021

Development Of Light Actuated Chemical Delivery Platform On A 2-D Array Of Micropore Structure, Hojjat Rostami Azmand, Hojjat Rostami Azmand

Dissertations and Theses

Localized chemical delivery plays an essential role in the fundamental information transfers within biological systems. Thus, the ability to mimic the natural chemical signal modulation would provide significant contributions to understand the functional signaling pathway of biological cells and develop new prosthetic devices for neurological disorders. In this paper, we demonstrate a light-controlled hydrogel platform that can be used for localized chemical delivery in a high spatial resolution. By utilizing the photothermal behavior of graphene-hydrogel composites confined within micron-sized fluidic channels, patterned light illumination creates the parallel and independent actuation of chemical release in a group of fluidic ports. The …


Development Of An Injectable Methylcellulose Hydrogel System For Nucleus Pulposus Repair And Regeneration, Nada A. Haq-Siddiqi Jan 2021

Development Of An Injectable Methylcellulose Hydrogel System For Nucleus Pulposus Repair And Regeneration, Nada A. Haq-Siddiqi

Dissertations and Theses

Low back pain is the most common cause of disability in the world and is often caused by degeneration or injury of the intervertebral disc (IVD). The IVD is a complex, fibrocartilaginous tissue that allows for the wide range of spinal mobility. Disc degeneration is a progressive condition believed to begin in the central, gelatinous nucleus pulposus (NP) region of the tissue, for which there are few preventative therapies. Current therapeutic strategies include pain management and exercise, or surgical intervention such as spinal fusion, none of which address the underlying cause of degeneration. With an increasingly aging population, the socioeconomic …


Stress Relaxation In Orthodontic Aligner Plastics; An In Vitro Comparison Study, Kristopher J. Keller Dec 2020

Stress Relaxation In Orthodontic Aligner Plastics; An In Vitro Comparison Study, Kristopher J. Keller

Theses & Dissertations

The purpose of this study was to ascertain if repeated stresses from extension cycling would result in accumulated damage in aligner materials and affect force delivery. A secondary goal was to identify potential differences in mechanical behavior present among orthodontic aligner polymers. Four thermoplastic polymers (Essix ACE, Taglus, Zendura, and Zendura FLX) were thermoformed, cut into strips, and extension cycled to 0.4 millimeters in a 37C water bath. Force decay, maximum and minimum force, and elastic modulus were measured during cycling. Additional samples were subjected to controlled tension until failure, allowing the measurement of yield strength, ultimate strength, and elastic …


Effect Of Nanofiller Coating And Loading On Facial Elastomer Physical Properties, Rahmi K. Aulia Aug 2020

Effect Of Nanofiller Coating And Loading On Facial Elastomer Physical Properties, Rahmi K. Aulia

Theses & Dissertations

Current materials used for facial prostheses are far from being desirable, and improved properties with “skin-like” feel are needed. This study evaluates property changes induced by sequential additions of uncoated and hydrophobic-coated nano-SiO2 to polydimethylsiloxane (PDMS) and compares them with those measured for conventional submicron SiO2-filled materials. Each filler type was sequentially added to vinyl-terminated PDMS at 0%, 0.5%, 5%, 10%, and 15% by weight. Tensile, tear, Durometer hardness, translucency and viscoelastic properties were evaluated, with hardness and translucency also evaluated following 3000 hours of outdoor weathering. Results demonstrated that 15% coated nano-SiO2-filled PDMS materials …


Nature-Inspired Electrode Materials For Next Generation Sustainable Energy Storage, Mikhail Miroshnikov Jun 2020

Nature-Inspired Electrode Materials For Next Generation Sustainable Energy Storage, Mikhail Miroshnikov

Dissertations, Theses, and Capstone Projects

Despite revolutionizing the world of portable electronics, the contemporary lithium-ion battery (LIB) suffers from challenges associated with the cost, safety, and environmental impact of transition metal oxide-based intercalation cathodes. To alleviate these issues, naturally occurring organic molecules may serve as sustainable alternatives to traditional inorganic cathode materials. The electrochemical properties of organic compounds are derived from redox-active functional groups containing oxygen, nitrogen and sulfur. Additionally, these functional groups are capable of coordinating metal ions beyond lithium, allowing for compatibility with sodium-ion batteries (SIBs) and other earth abundant metal-based energy storage systems. However, despite competitive performance against commercialized cathode materials, much …


Peptoid And Antibody-Based Gfp Sensors, Solomon Isu May 2020

Peptoid And Antibody-Based Gfp Sensors, Solomon Isu

Graduate Theses and Dissertations

In this work, we have made and characterized a pair of immunobiosensors for detecting the green fluorescent protein (GFP) in an aqueous matrix. An anti-GFP antibody-based biosensor was assembled to detect GFP, while a novel peptoid (N-substituted oligomers of glycine designated as IOS-1) biosensor was also assembled for GFP detection. A quartz crystal microbalance (QCM) gold sensor was used as the supporting substrate for self-assembly of the immunobiosensors. Gravimetric measurements of the QCM gold sensor during immunobiosensor construction and operation were available in real-time using a QCM instrument. X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and Fluorescence microscopy were used …


Engineering Nanomaterials For Imaging And Therapy Of Bacteria And Biofilm-Associated Infections, Akash Gupta Oct 2019

Engineering Nanomaterials For Imaging And Therapy Of Bacteria And Biofilm-Associated Infections, Akash Gupta

Doctoral Dissertations

Infections caused by multidrug-resistant (MDR) bacteria pose a serious global burden of mortality, causing thousands of deaths each year. The “superbug” risk is further exacerbated by chronic infections generated from antibiotic-resistant biofilms that are highly resistant to available treatments. Synthetic macromolecules such as polymers and nanoparticles have emerged as promising antimicrobials. Moreover, ability to modulate nanomaterial interaction with bacterial cellular systems plays a pivotal role in improving the efficacy of the strategy. In the initial studies on engineering nanoparticle surface chemistry, I investigated the role played by surface ligands in determining the antimicrobial activity of the nanoparticles. In further study, …


Left Atrial Model, Borna Sobati, Sarah Porello, Tess Pate May 2019

Left Atrial Model, Borna Sobati, Sarah Porello, Tess Pate

Biomedical Engineering

The objective is to produce an electrophysiological model of an adult human left atrium. This model will be used to test mapping probe catheters used for locating cardiac arrhythmias against current technology used in practice. Dr. Chris Porterfield requested this model and other physicians or probe catheter manufacturers may also use this product in the future. Dr. Porterfield also discussed the possibility of future senior project groups using the model as a bench test for designing new catheter tips. The model will precisely simulate electrical behaviors of the heart in normal as well as arrhythmic conditions. Ideally, the model will …


Iron-Containing Nanoparticles For The Treatment Of Chrionic Biofilm Infections In Cystic Fibrosis, Leisha M. A. Martin Apr 2019

Iron-Containing Nanoparticles For The Treatment Of Chrionic Biofilm Infections In Cystic Fibrosis, Leisha M. A. Martin

Nanoscience and Microsystems ETDs

Cystic fibrosis (CF) is the most common genetic disease resulting in the morbidity and mortality of Caucasian children and adults worldwide. Due to a genetic mutation resulting in malfunction of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) protein, CF patients produce highly viscous mucus in their respiratory tract. This leads to impairment of the mucociliary clearance of inhaled microbes. In addition to reduced microbial clearance, anoxic environmental conditions in the lungs promote biofilm-mode growth of the pathogenic bacterial species Pseudomonas aeruginosa. Chronic infections of P. aeruginosa begin in early childhood and typically persist until respiratory failure and death result. The …


Direct Printing Of Conductive Inks For Organic Electronics And Wearable Microfluidics, Aditi Naik Mar 2019

Direct Printing Of Conductive Inks For Organic Electronics And Wearable Microfluidics, Aditi Naik

Doctoral Dissertations

This dissertation examines the direct printing of conductive inks on polymeric substrates for applications in organic electronics, microfluidic valving systems, and wearable sweat sensors. The inexpensive production of solution-based electrodes with high electrical conductivity is necessary to enable the next-generation of printed, flexible, and organic electronics. Specifically, the optimization and printing of liquid-phase graphene ink and nanoparticle-based silver ink by soft nanoimprint lithography and inkjet-printing is discussed to achieve printed functional devices. Using scalable low-cost patterning systems, these flexible applications are compatible with roll-to-roll processing, enabling large-scale manufacturing. This research expands the knowledge of high-resolution printing optimization for the direct …


Role Of Rigidity And Flexibility Of Functional Groups Within The Interior Of Supramolecular Assemblies And Their Implications, Oyuntuya Munkhbat Mar 2018

Role Of Rigidity And Flexibility Of Functional Groups Within The Interior Of Supramolecular Assemblies And Their Implications, Oyuntuya Munkhbat

Doctoral Dissertations

Engineering of supramolecular assemblies at molecular level renders functional nanomaterials that present explicit response to certain environmental changes. Systematic structure-property correlation studies will unravel the fundamental design constraints of these functional nanomaterials that fulfill the emergent need. This dissertation will primarily focus on understanding the role of rigidity and flexibility of functional groups within amphiphilic assemblies and employing this basic concept in drug delivery and diagnostics applications. Supramolecular assemblies formed by amphiphilic dendrimers and polymers are preferred for this study as they exhibit high thermodynamic stability and structural flexibility. The role of aromatic interaction on the unimer-aggregate dynamic equilibrium was …


Design And Analysis Of A 3d-Printed, Thermoplastic Elastomer (Tpe) Spring Element For Use In Corrective Hand Orthotics, Kevin Thomas Richardson Jan 2018

Design And Analysis Of A 3d-Printed, Thermoplastic Elastomer (Tpe) Spring Element For Use In Corrective Hand Orthotics, Kevin Thomas Richardson

Theses and Dissertations--Mechanical Engineering

This thesis proposes an algorithm that determine the geometry of 3D-printed, custom-designed spring element bands made of thermoplastic elastomer (TPE) for use in a wearable orthotic device to aid in the physical therapy of a human hand exhibiting spasticity after stroke. Each finger of the hand is modeled as a mechanical system consisting of a triple-rod pendulum with nonlinear stiffness at each joint and forces applied at the attachment point of each flexor muscle. The system is assumed quasi-static, which leads to a torque balance between the flexor tendons in the hand, joint stiffness and the design force applied to …


A Multi-Channel 3d-Printed Bioreactor For Evaluation Of Growth And Production In The Microalga Dunaliella Sp, Cristian A. Cox Dec 2016

A Multi-Channel 3d-Printed Bioreactor For Evaluation Of Growth And Production In The Microalga Dunaliella Sp, Cristian A. Cox

Electronic Theses and Dissertations

We explored the capabilities of additive manufacturing using a photo-cured jetted material 3D printer to manufacture a milli-microfluidic device with direct application in microalgae Dunaliella sp growth and intracellular compounds biosynthesis tests. A continuous microbioreactor for microalgae culture was CAD designed and successfully built in 1 hour and 49 minutes using black photopolymer cured by UV and a support material. The microreactor was made up of 2 parts including the bioreactor itself and a microchannel network for culture media fluids and microalgae. Both parts were assembled to form a single unit. Additional optical and auxiliar components were added. An external …


Inhibition Of Bacterial Growth And Prevention Of Bacterial Adhesion With Localized Nitric Oxide Delivery, Julia Osborne Jan 2016

Inhibition Of Bacterial Growth And Prevention Of Bacterial Adhesion With Localized Nitric Oxide Delivery, Julia Osborne

Dissertations, Master's Theses and Master's Reports

Bacterial infections continue to be a problem at the site of an indwelling medical device, and over the years, various bacterial strains have become more resistant to current antibiotic treatments. Bacterial infection at an indwelling medical device can be dangerous and affect the performance of the medical device which can ultimately lead to the failure of the device due to bacterial resistance to treatment.

Nitric Oxide (NO) has been shown to possess antibacterial properties to prevent and inhibit bacterial growth. NO releasing coatings on indwelling medical devices could provide a reduction in bacterial infections that occur at the device site …


Effects Of Expected Service Life Exposures On The Functional Properties And Impact Performance Of An American Football Helmet Outer Shell Material, David E. Krzeminski Dec 2015

Effects Of Expected Service Life Exposures On The Functional Properties And Impact Performance Of An American Football Helmet Outer Shell Material, David E. Krzeminski

Dissertations

The purpose of this dissertation is to gain a greater scientific understanding of the changes in functional material properties and impact performance of an American football helmet outer shell material under expected service life exposures. The research goals are to (i) quantify chemical, physical, thermal, and mechanical degradation of an American football outer shell material under expected environmental conditions and (ii) develop a linear drop test impact protocol to employ expected on-field impact conditions to American football helmet components and a plaque-foam (i.e., shell-liner) surrogate. Overall, a step-wise progression of analysis was demonstrated to concurrently quantify and understand changes in …


Mimicking The Arterial Microenvironment With Peg-Pc To Investigate The Roles Of Physicochemical Stimuli In Smc Phenotype And Behavior, William G. Herrick Aug 2015

Mimicking The Arterial Microenvironment With Peg-Pc To Investigate The Roles Of Physicochemical Stimuli In Smc Phenotype And Behavior, William G. Herrick

Doctoral Dissertations

The goal of this dissertation was to parse the roles of physical, mechanical and chemical cues in the phenotype plasticity of smooth muscle cells (SMCs) in atherosclerosis. We first developed and characterized a novel synthetic hydrogel with desirable traits for studying mechanotransduction in vitro. This hydrogel, PEG-PC, is a co-polymer of poly(ethylene glycol) and phosphorylcholine with an incredible range of Young’s moduli (~1 kPa - 9 MPa) that enables reproduction of nearly any tissue stiffness, exceptional optical and anti-fouling properties, and support for covalent attachment of extracellular matrix (ECM) proteins. To our knowledge, this combination of mechanical range, low …


Determining A Method For Rendering Low Cost Cdse(Zns) Core(Shell) Quantum Dots Aqueous Soluble Via Amphiphilic Polymer Wrapping, Patrick Mcbride Jun 2011

Determining A Method For Rendering Low Cost Cdse(Zns) Core(Shell) Quantum Dots Aqueous Soluble Via Amphiphilic Polymer Wrapping, Patrick Mcbride

Materials Engineering

Herein is described the procedure of two amphiphilic polymer wrapping techniques that may be employed for obtaining aqueous soluble quantum dots (QDs) for use in biological fluorescent imaging applications. The advent of QDs has led to new nanoscale fluorescent materials that exhibit unparalleled quantum yields (QYs), high resistance to photobleaching, tunable emissions, and
absorption over a large optical range. However, the QD synthesis employed here at Cal Poly to obtain bright, photostable CdSe(ZnS) core(shell) QDs involves the use of organic solvents and surfactants, leading to hydrophobic QDs. Since all of biology relies on aqueous solubility, this hydrophobicity creates a major …