Open Access. Powered by Scholars. Published by Universities.®

Polymer and Organic Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Polymer and Organic Materials

Shape Memory Polymer-Based Multifunctional Syntactic Foams, Siavash Sarrafan Apr 2023

Shape Memory Polymer-Based Multifunctional Syntactic Foams, Siavash Sarrafan

LSU Doctoral Dissertations

With the increase in popularity of shape memory polymers (SMPs), especially in applications such as aerospace, textile, biomedical engineering, and even structures, the weight of the material and the devices made with it has always been a crucial factor. Using the shape memory polymer as a matrix to make a syntactic foam is one of the best and most affordable approaches to creating a lighter material that still has the shape memory effect. The addition of particles of different stiffness, strength, and size, with variable fractions, creates a composite that enables engineering the mechanical, as well as other physical and …


Monitoring Of State Transitions In Extreme Environment Application Materials Using Fiber Bragg Grating Sensors, Sabuj Khadka Jan 2022

Monitoring Of State Transitions In Extreme Environment Application Materials Using Fiber Bragg Grating Sensors, Sabuj Khadka

Electronic Theses and Dissertations

By embedding both a single fiber Bragg grating (FBG) sensor and a thermocouple (TC) during the manufacturing for extreme environment applications of certain classes of materials such as metals and polymers, a novel in-situ approach was developed to precisely monitor their entire manufacturing processes. This novel monitoring technique was able to identify many characteristic points during the curing of room and high-temperature epoxies and the solidification processes of metal alloys composed of tin and bismuth which were selected in this research purely for verification purposes. Some of the characteristic points identified for the epoxies were: (i) the gel point, (ii) …


Loading Orientation Dependence On The Compressive Response Of Ice-Templated Ceramic-Polymer Composites, Sashanka Akurati, Justine Marin, Dipankar Ghosh Apr 2020

Loading Orientation Dependence On The Compressive Response Of Ice-Templated Ceramic-Polymer Composites, Sashanka Akurati, Justine Marin, Dipankar Ghosh

College of Engineering & Technology (Batten) Posters

Natural materials are made from weak constituents, yet exhibit an excellent synergy of high stiffness, strength, and damage-tolerance. They consist of alternate layers of the hard and soft phases with a complex hierarchical structural organization. The ice-templating technique provides an approach to fabricate multilayered architectures for engineering applications. In this technique, an aqueous ceramic suspension is solidified unidirectionally leading to phase separation into alternating layers of ice-crystals and ceramic particles. Ice-crystals are sublimated by freeze-drying process and resultant ceramic foams are sintered to impart strength. The fabricated sintered ceramic foams contain alternate layers of oriented ceramic lamella walls and pores. …


Gnygrens18.Pdf, Garrett Nygren Aug 2018

Gnygrens18.Pdf, Garrett Nygren

Garrett Nygren

The finite element method was used to evaluate microstructural strengthening and toughening effects in nanoparticulate reinforced polymer composites (nanocomposites) and in short aligned discontinuous fiber reinforced polymer composites. Nanoparticulate reinforcement is a well-known method of polymer toughening which can greatly expand the range of engineering applications for polymers. However, the mechanisms of nanoparticulate toughening, as well as complementary sub-micron fracture processes, are not well understood. Short, aligned, discontinuous carbon fiber reinforced thermoplastics show promise as a versatile, inexpensive material system with favorable manufacturability, but failure of the associated morphologies is also not yet well explored.
In nanocomposites, two microstructural effects …


Multiscale Modeling: Thermal Conductivity Of Graphene/Cycloaliphatic Epoxy Composites, Sorayot Chinkanjanarot Jan 2017

Multiscale Modeling: Thermal Conductivity Of Graphene/Cycloaliphatic Epoxy Composites, Sorayot Chinkanjanarot

Dissertations, Master's Theses and Master's Reports

The thermal property of epoxy as the binder in the Carbon Fiber (CF) composites, especially thermal conductivity is important to achieve the advance technology and to improve the performance of materials. Multiscale modeling including molecular dynamic (MD) modeling and micromechanical modeling is used to study the properties of neat Cycloaliphatic Epoxies (CE) and Graphene nanoplatelet (GNP)/CE with and without covalent functionalization.

The thermal properties (glass-transition temperature, thermal expansion coefficient, and thermal conductivity) and mechanical properties of CE system are investigated by MD modeling using OPLS-All Atom force field. A unique crosslinking technique is developed to achieve the cured CE models …