Open Access. Powered by Scholars. Published by Universities.®

Polymer and Organic Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Polymer and Organic Materials

Enhancement Of Phase Change Material Sorbitol By Nanoparticle Inclusion For Improving Thermal Energy Storage Capabilities, Joshua Kasitz May 2020

Enhancement Of Phase Change Material Sorbitol By Nanoparticle Inclusion For Improving Thermal Energy Storage Capabilities, Joshua Kasitz

Mechanical Engineering Undergraduate Honors Theses

Thermal management of electronic devices has become an increasingly vital field of study with the rapid miniaturization of many key electrical components. With the significant improvement of semiconductor manufacturing and intensified focus on interconnects, electronic devices have decreased in size at an incredible rate. Decreasing spatial requirements is essential to improving device capabilities as the electronic system is able to incorporate more components. Currently, electronic systems are drastically limited by the capabilities of their cooling mechanisms. Smaller devices lead to large increases in the energy density of the system and require more powerful cooling systems to maintain proper component operating …


Silicone Tadpole: Research Into Soft Bodies, Danielle Fernandez May 2019

Silicone Tadpole: Research Into Soft Bodies, Danielle Fernandez

Mechanical Engineering Undergraduate Honors Theses

In this thesis, research is conducted in the area of soft robotics by building a soft tadpole that can deform with a specific air pressure. The goal is to mimic the motion of an organic tadpole in respect to its S-shaped tail movement. The angle of deformation, derived from material mechanic theories, ranges from 45 to 80 degrees for this type of movement. The design includes a head compartment which acts as a tank to transfer nitrogen pressure and a tail section that receives the said pressure and bends as a result. The tail section was designed with two rows …


Phase Field Model Of Thermally Induced Phase Separation (Tips) For The Formation Of Porous Polymer Membranes, Ashley Green, Aria Green May 2018

Phase Field Model Of Thermally Induced Phase Separation (Tips) For The Formation Of Porous Polymer Membranes, Ashley Green, Aria Green

Mechanical Engineering Undergraduate Honors Theses

Most membrane research and development has been done through experimental work, which can be costly and time consuming. An accurate computational model would greatly reduce the need for these experiments. The focus of the research presented in this paper is to create an accurate computational model for membrane formation using thermally induced phase separation (TIPS). A phase field model is employed to create this model including the Cahn Hilliard Equation and Flory Huggins Theory. This model produced computational results that correspond well with theoretical and experimental results. The model was then adapted to correspond to the PVDF/DPC polymer-solvent system by …