Open Access. Powered by Scholars. Published by Universities.®

Polymer and Organic Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Polymer and Organic Materials

Evaluating The Effects Of Granulated Rubber And Glass Fibers In Polymer Concrete As A Structural Material For Wafer Grinding Machines, Kevin Gabriel Kuehn, Philip Randall Streeter Jun 2022

Evaluating The Effects Of Granulated Rubber And Glass Fibers In Polymer Concrete As A Structural Material For Wafer Grinding Machines, Kevin Gabriel Kuehn, Philip Randall Streeter

Materials Engineering

Polymer concrete is a composite material used to replace cast iron and steel in wafer grinding machines for vibration damping. During the grinding and lapping processes of manufacturing silicon wafers, excessive vibrations may cause subsurface damage which requires additional polishing and reduces yield. Nine compositions containing various levels of granulated rubber and glass fibers were manufactured. CRM WRF-10 granulated rubber was examined at 0%, 5%, and 10% and Corning Cem-Fil glass fibers were added at 0%, 0.5%, and 1% by weight. Smooth-On EpoxAcast 690 epoxy resin was held constant at 16% for each composition. Crushed granite aggregate from Martin Marietta, …


Development Of A Marine Biodegradable Target Balloon, Blake Samuel Robinson, Arash Sam Akhavi, David Leonardo Albarran-Martinez Jun 2021

Development Of A Marine Biodegradable Target Balloon, Blake Samuel Robinson, Arash Sam Akhavi, David Leonardo Albarran-Martinez

Materials Engineering

The US Navy utilizes PVC target balloons, known as Killer Tomatoes, that are inflated onboard a naval vessel then deployed into the ocean to calibrate a variety of weaponry. The Navy has requested the investigation of biodegradable polymers to replace the PVC in attempts to reduce ocean waste that is generated from the leftover PVC material. After communicating with American Pacific Plastic Fabricators (APPF), the current manufacturer of the Killer Tomatoes, we gained an understanding of the manufacturing process and the material requirements that would allow a new material to be integrated into their current process. Two proprietary, trial polymers …


Analysis Of The Low-Cycle Fatigue Behavior Of Silicone Rubber For Biomedical Balloons, Chase Cooper Jun 2018

Analysis Of The Low-Cycle Fatigue Behavior Of Silicone Rubber For Biomedical Balloons, Chase Cooper

Materials Engineering

The development of a medical drug delivery device that allows for the deployment drugs into the adventitial tissue of blood vessels requires the inflation of a silicone elastomer. The inflated silicone must be able to consistently endure multiple loading cycles without failing so that the device can operate reliably. There are multiple methods of processing the silicone for the device and the goal of this study is to examine the effect of the various processing methods on the characteristics of the silicone. The Dynamic Mechanical Analysis Machine (DMA) is used to model the conditions of the device’s application by performing …


Process Development For Compression Molding Of Hybrid Continuous And Chopped Carbon Fiber Prepreg For Production Of Functionally Graded Composite Structures, Corinne Marie Warnock Dec 2015

Process Development For Compression Molding Of Hybrid Continuous And Chopped Carbon Fiber Prepreg For Production Of Functionally Graded Composite Structures, Corinne Marie Warnock

Master's Theses

Composite materials offer a high strength-to-weight ratio and directional load bearing capabilities. Compression molding of composite materials yields a superior surface finish and good dimensional stability between component lots with faster processing compared to traditional manufacturing methods. This experimental compression molding capability was developed for the ME composites lab using unidirectional carbon fiber prepreg composites. A direct comparison was drawn between autoclave and compression molding methods to validate compression molding as an alternative manufacturing method in that lab. A method of manufacturing chopped fiber from existing unidirectional prepreg materials was developed and evaluated using destructive testing methods. The results from …


Molecular Dynamics Investigation Of The Arabinan-Cellulose Interface For Cellulose Nanocomposite Applications, Luke Thornley Jun 2015

Molecular Dynamics Investigation Of The Arabinan-Cellulose Interface For Cellulose Nanocomposite Applications, Luke Thornley

Materials Engineering

Atom level computer simulations of the arabinan and cellulose interface were performed to better understand the mechanisms that give arabinan-cellulose composites (ArCCs) their strength with the goal to improve man-made ArCCs. The molecular dynamics (MD) software LAMMPS was used in conjunction with the ReaxFF/c force field to model the bond between cellulose and arabinan. A cellulose nanocrystal with dimensions 51 x 32 x 8 Å was minimized with various weight percent of water, 0%, 3%, 5%, 8%, 10%, and 12%. After the system was equilibrated for at least 100,000 femtoseconds, an arabinan molecule composed of 8 arabinose rings was added …


Effect Of Time Delay Between Etching And Adhesive Bonding (“Outlife” Time) On Lap-Shear Strength Of Aluminum Alloys Using Environmentally-Friendly P2 Etch, Josh Barkhimer, Matthew Erich, Gokul Nair Jun 2015

Effect Of Time Delay Between Etching And Adhesive Bonding (“Outlife” Time) On Lap-Shear Strength Of Aluminum Alloys Using Environmentally-Friendly P2 Etch, Josh Barkhimer, Matthew Erich, Gokul Nair

Materials Engineering

Raytheon Company currently uses a Forest Products Laboratory (FPL) paste etchant for preparing aluminum surfaces for adhesive bonding, and FPL is a source of hazardous hexavalent chromium. The goal of this study was to evaluate a less-toxic P2 paste etchant as a possible replacement. Coupons of 2024-T3, 6061-T6, and 7075-T6 grades of aluminum alloy were solvent-degreased, abrasively cleaned, and etched at room temperature using P2 paste following a strict protocol adopted from Raytheon. Coupons were then left exposed to air for assigned time intervals (or “outlife” times) of 0, 1, 4, 8, 16, and 63 or 72 hours. The aluminum …


Low Velocity Impact Tower Feasibility, Setup, And Impact Testing Of Carbon Fiber Reinforced Epoxy Thermoset And Peek Thermoplastic Matrix Composites, Brent Plehn Jun 2013

Low Velocity Impact Tower Feasibility, Setup, And Impact Testing Of Carbon Fiber Reinforced Epoxy Thermoset And Peek Thermoplastic Matrix Composites, Brent Plehn

Materials Engineering

A low velocity impact tower was donated to Cal Poly's Materials Engineering Department along with four fiber reinforced polymer matrix composites. The tower was set up in building 192 in the Mechanical Testing Laboratory. Improvements were made to the tower including adding velocity detection capabilities, making loose hardware inclusive, adding an extra tower arm for better consistency, adding a double jawed clamp for faster testing, and rerouting the tower's compressed air system to improve performance. A standard operating procedure was drafted, tested, and redrafted for impact testing composite panels. The four composite panels consisted of two quasi-isotropic 16 ply AS-1 …