Open Access. Powered by Scholars. Published by Universities.®

Polymer and Organic Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Biology and Biomimetic Materials

Theses/Dissertations

PDMS

Articles 1 - 3 of 3

Full-Text Articles in Polymer and Organic Materials

Gravity-Drawing Flexible Silicone Filaments As Fiber Optics And Model Foldamers, Katherine Snell Jan 2020

Gravity-Drawing Flexible Silicone Filaments As Fiber Optics And Model Foldamers, Katherine Snell

CMC Senior Theses

Here, we present a method of gravity-drawing polydimethylsiloxane (PDMS) silicone fibers with application as fiber optics and as model foldamers. Beginning as a viscous liquid, PDMS is cured using heat until its measured viscosity reaches 4000 mPa•s. The semi-cured elastomer is then extruded through a tube furnace to produce thin (diameters on the order of hundred micrometers) filaments with scalable lengths. PDMS is biocompatible, gas-permeable, flexible, and hydrophobic. Additionally, the PDMS surface hydrophobicity can be modified via UV exposure, O2 plasma, and corona discharge. We demonstrate the patternibility (i.e patterns of hydrophobicity) of PDMS fibers, adding complexity to potential foldamer …


Artificial Alveolar-Capillary Membrane On A Microchip, Keith Male Jun 2012

Artificial Alveolar-Capillary Membrane On A Microchip, Keith Male

Materials Engineering

A microfluidic device was synthesized out of polydimethyl siloxane (PDMS) to simulate the structure of the alveolar-capillary interface of the human lung. Soft lithography techniques were used to build a mold structure out of SU-8 epoxy at heights ranging from 30µm to 110 µm on a silicon substrate, with the 70 µm structure working the best. A mixture of 10:1 Sylgard 184 elastomer was then cast using the mold, and cured at a temperature of 80oC. For the porous membrane, the PDMS was spun on at 6000rpm for 30 seconds using a spin coater to produce a membrane …


Artificial Muscle Project: Process Development Of Polydimethyl Siloxane Thin Films For Use In Dielectric Electroactive Polymer Artificial Muscle Actuators, Vincent J. Gayotin, Richard W. Morrison, Paul A. Preisser Jun 2011

Artificial Muscle Project: Process Development Of Polydimethyl Siloxane Thin Films For Use In Dielectric Electroactive Polymer Artificial Muscle Actuators, Vincent J. Gayotin, Richard W. Morrison, Paul A. Preisser

Materials Engineering

An artificial muscle design was created founded on the principles of a dielectric electroactive polymer (DEAP), which is fundamentally similar to a capacitor. A polydimethyl siloxane (PDMS)-based elastomer, Sylgard 184 from Dow Corning, was chosen for the design and spun coat onto polystyrene (PS) Petri dishes at varying speeds to create a thin film, using speeds of 2000 rpm, 3000 rpm, 4000 rpm, 5000 rpm, and 6000 rpm. The film thicknesses were measured optically through use of a microscope with coupled computer imaging software to generate a characteristic curve of film thickness to spin speed, achieving a minimum film thickness …