Open Access. Powered by Scholars. Published by Universities.®

Other Materials Science and Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Structural Materials

2023

Institution
Keyword
Publication
Publication Type
File Type

Articles 1 - 11 of 11

Full-Text Articles in Other Materials Science and Engineering

3d Experimental Studies Of Temperature And Crystallographic Effects On Creep And Strength In Rock Salt, Amirsalar Moslehy Dec 2023

3d Experimental Studies Of Temperature And Crystallographic Effects On Creep And Strength In Rock Salt, Amirsalar Moslehy

Doctoral Dissertations

Salt domes utilization as storage reservoirs in the energy sector has led to extensive studies on rock salt’s mechanical and geothermal behavior. These important facilities’ safety and serviceability rely on understanding rock salt’s compressive strength and creep behavior under various loading directions, water contents, in-situ stresses, and temperatures. Despite numerous studies on rock salt’s mechanical behavior in the literature, there are still many unanswered questions about rock salt’s behavior. This dissertation was aimed at utilizing state-of-the-art experimental techniques such as 3D synchrotron micro-computed tomography (SMT) and 3D x-ray diffraction (3DXRD) along with hundreds of compression and creep experiments to enhance …


Thermo-Mechanical Instabilities In Next-Generation Friction Materials In High-Speed Sliding Systems, Kingsford Koranteng Nov 2023

Thermo-Mechanical Instabilities In Next-Generation Friction Materials In High-Speed Sliding Systems, Kingsford Koranteng

Electronic Theses and Dissertations

For centuries, the manufacturing industry has incorporated metals like copper into friction materials to enhance thermal properties and minimize thermo-mechanical instabilities (TMI) in high-speed sliding systems. Unfortunately, these metals have adverse environmental effects due to the emission of hazardous particulate matter. As a result, there is a growing movement towards adopting next-generation friction materials as an alternative solution.

The study begins by conducting experimental and numerical investigations to examine the instabilities found in metal-based friction materials. The primary objective is to utilize the insights gained from the investigations to computationally explore effective strategies for mitigating various instabilities that may arise …


Interlaminar Tensile Properties Of Unidirectional And Woven Carbon Fiber Reinforced Toughened Epoxy Laminates, Eric Timothy Casey, Sean Mckalip Thompson Jun 2023

Interlaminar Tensile Properties Of Unidirectional And Woven Carbon Fiber Reinforced Toughened Epoxy Laminates, Eric Timothy Casey, Sean Mckalip Thompson

Materials Engineering

This project aims to develop a dataset on interlaminar tensile strength comparing unidirectional and woven thermoset matrix carbon fiber composites keeping ply count, matrix material, and fiber diameter constant. The interlaminar tensile strength is an important property relating to the delamination failure mode. Interlaminar tensile strength is determined using the ASTM D6415 testing standard. This test is a modified four-point bend test using a 90° curved beam test specimen. Laminates were produced by laying up pre-impregnated carbon fiber sheets onto a curved beam tooling. The unidirectional laminate was produced with 20 plies in a [0,0,90,0,0]4 layup pattern. The woven …


Synthesis And Characterization Of Sodium Cathode Materials, He Zhou May 2023

Synthesis And Characterization Of Sodium Cathode Materials, He Zhou

McKelvey School of Engineering Theses & Dissertations

As sodium batteries hold great promise as a next-generation energy storage device to replace lithium batteries, the development of sodium battery materials has become increasingly urgent. The current study aims to investigate two potential sodium-ion battery cathode materials, Sodium Vanadium Phosphate, and Sodium Manganese Hexacyanoferrate, optimize the experimental procedures, conduct a systematic analysis of material properties and characterization, and ultimately determine the ideal synthesis conditions for these materials.

In the first part of the study, we focused on optimizing the synthesis of Sodium Vanadium Phosphate. By investigating various synthesis conditions, such as annealing temperature, pressure, ascorbic acid content, and material …


Atomistic Simulation Studies Of Thin Film Growth And Plastic Deformation In Metals And Metal/Ceramic Nanostructures, Reza Namakian Feb 2023

Atomistic Simulation Studies Of Thin Film Growth And Plastic Deformation In Metals And Metal/Ceramic Nanostructures, Reza Namakian

LSU Doctoral Dissertations

Despite the significant improvements in manufacturing and synthesis processes of metals and ceramics in the past decades, there are still areas in which the procedure is still frequently more of an art or skill rather than a science. Therefore, systematic and combined experimental and computational studies are required to facilitate the development of techniques that offer thorough understanding of the events taking place during manufacturing and synthesis processes. With regard to these issues, it is paramount to address microscale characterizations and atomic scale understanding of the events during fabrication processes. One of the focuses of this study is unraveling fundamental …


Investigation Of Fiber Orientation And Mechanical Properties Of Pyrolysis Recycled Carbon-Fiber Reinforced Thermoset Composite, Reva N. Simmons, Harry Lee, Garam Kim Jan 2023

Investigation Of Fiber Orientation And Mechanical Properties Of Pyrolysis Recycled Carbon-Fiber Reinforced Thermoset Composite, Reva N. Simmons, Harry Lee, Garam Kim

Discovery Undergraduate Interdisciplinary Research Internship

With increasing demand of carbon fiber reinforced fiber thermoset composites, establishing a sustainable cycle for these materials becomes crucial. Pyrolysis is a process of reclaiming carbon fiber from thermoset composites by thermally degrading the polymer at high temperatures allowing the fibers to be extracted. Carbon fiber reclaimed through current pyrolysis processes for thermoset composites typically loses its original shape and orientation, making it difficult to reorganize the fibers. This study investigated the feasibility of maintaining the fiber orientations for continuous fiber reinforced thermoset composite during pyrolysis by stitching the carbon fiber layup to a conformable copper mesh during the manufacturing …


Application Of Multi-Scale Computational Techniques To Complex Materials Systems, Mujan N. Seif Jan 2023

Application Of Multi-Scale Computational Techniques To Complex Materials Systems, Mujan N. Seif

Theses and Dissertations--Chemical and Materials Engineering

The applications of computational materials science are ever-increasing, connecting fields far beyond traditional subfields in materials science. This dissertation demonstrates the broad scope of multi-scale computational techniques by investigating multiple unrelated complex material systems, namely scandate thermionic cathodes and the metallic foam component of micrometeoroid and orbital debris (MMOD) shielding. Sc-containing "scandate" cathodes have been widely reported to exhibit superior properties compared to previous thermionic cathodes; however, knowledge of their precise operating mechanism remains elusive. Here, quantum mechanical calculations were utilized to map the phase space of stable, highly-faceted and chemically-complex W nanoparticles, accounting for both finite temperature and chemical …


Hdd Dataset: Optimising Retrofitted Insulation For Irish Residential Building Walls, Rakshit D. Muddu, Aimee Byrne, Anthony James Robinson Jan 2023

Hdd Dataset: Optimising Retrofitted Insulation For Irish Residential Building Walls, Rakshit D. Muddu, Aimee Byrne, Anthony James Robinson

Datasets

In this study, a thermal-economic analysis was conducted to determine the optimum insulation thickness of retrofitted insulation walls in different regions in Ireland. This was based on the Heating Degree Day method (HDD). This dataset contains optimum insulation thickness, payback period, cost savings and carbon emission for all 25 counties in the Republic of Ireland


Fem Eem Dataset: Optimising Retrofitted Insulation For Irish Residential Building Walls, Rakshit D. Muddu, Aimee Byrne, Anthony Robinson Dr. Jan 2023

Fem Eem Dataset: Optimising Retrofitted Insulation For Irish Residential Building Walls, Rakshit D. Muddu, Aimee Byrne, Anthony Robinson Dr.

Datasets

A large number of combinations of Irish wall types, insulation materials, and heating fuel types were produced to compare the multiple variables which influence Optimal Insulation Thickness values. The total cost (TC) and carbon emission (CE) at optimum insulation thickness (OIT) for all combinations of insulation material and three types of fuel are considered. The dataset presents OIT for solid wall, cavity wall and cavity block wall types located in Monaghan, Dublin, and Kerry.


Investigation Of Microstructurally Dependent Mechanical Properties Of Cold Sprayed Copper Using Correlative Microscopy, Quintin Otto Jan 2023

Investigation Of Microstructurally Dependent Mechanical Properties Of Cold Sprayed Copper Using Correlative Microscopy, Quintin Otto

UNF Graduate Theses and Dissertations

This project employs multi-instrument materials characterization to analyze material made with the “Cold Spray” additive manufacturing process. Cold spray is an emerging additive manufacturing technique with unique benefits resulting from its low temperature adhesion process induced by plastic deformation. Metallic powder collides at high speeds creating three dimensional materials and coatings without the need for melting. Copper cold sprayed specimens were analyzed using a series of imaging techniques to characterize the microstructure at varying levels of detail and magnification. Scanning electron microscopy and electron back scattered diffraction were paired with microhardness testing to generate a correlative comparison between microstructure and …


Development Of Inconel 718f And Inconel 718e Powders For Parts Manufacturing Utilizing Binder Jet Three-Dimensional Printing And Compressed Pellet Methods, Duncan Eric Manor Ii Jan 2023

Development Of Inconel 718f And Inconel 718e Powders For Parts Manufacturing Utilizing Binder Jet Three-Dimensional Printing And Compressed Pellet Methods, Duncan Eric Manor Ii

Graduate Theses, Dissertations, and Problem Reports

Alloy Inconel 718 is a Ni based superalloy used for high temperature applications including turbine blades, turbocharger rotors and nuclear reactors. Inconel 718 is a popular commercial atomized powder that has limitations in performance for use in additive manufacturing applications due to poor part quality and efficiency of current fabrication methods. Developing new compositions and additive manufacturing (AM) methodologies of IN718 is critical to improve the quality and the efficiency of IN718 parts manufacturing. Developing new additive manufacturing methodology that produces higher quality parts made of IN718 as compared to current methods has the potential to greatly impact industry, academia, …