Open Access. Powered by Scholars. Published by Universities.®

Other Materials Science and Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Other Materials Science and Engineering

Biodegradable Active Bio-Nanocomposite Film For The Enhanced Shelf Life Of Tomatoes, Kalpani Y. Perera, Shubham Sharma, Brendan Duffy, Amit K. Jaiswal, Swarna Jaiswal Nov 2022

Biodegradable Active Bio-Nanocomposite Film For The Enhanced Shelf Life Of Tomatoes, Kalpani Y. Perera, Shubham Sharma, Brendan Duffy, Amit K. Jaiswal, Swarna Jaiswal

Articles

The increased environmental pollution has led to finding sustainable solutions for non-renewable plastic-based food packaging materials. Thus, the use of biomaterial-based packaging material has become an immense trend. This work aims at developing an antimicrobial biodegradable chitosanalginate bio-nano composite film with TiO2 nanoparticle (NPs) for food packaging applications. The film was developed by a solution casting method. The chemical, mechanical, thermal, barrier, antimicrobial, and biodegradable properties of the packaging films were evaluated. Packaging studies were performed for 15 days for cherry tomatoes. The designed packaging material had enhanced the mechanical properties with a significantly (p < 0.05) higher tensile strength of 15.76 folds and 2 fold higher elongation at break. The UV barrier properties increased by 88.6%, while the film transparency decreased by 87.23%. Molecular interaction of N-H covalent bonds was observed between alginate and chitosan together with TiO2 NPs. The developed bio-nano composite film showed antimicrobial activity against foodborne pathogens E. coli, S. aureus, S. typhi, and L. monocytogene with a log reduction of 7.08, 7.28, 6.04 & 6.02 log CFU/ml respectively at 24 hours incubation period. The film was completely biodegraded and a weight loss of 89.06% was observed in bio-nanocomposite film during the 3 months. Shelf-life estimation of cherry tomato using developed packaging films showed an increase in the shelf-life up to 8 days with stable pH, total soluble solids, and weight with no bacterial growth when packaged with prepared film. Owing to their improved mechanical, UV barrier, antibacterial, and biodegradability, the prepared active bio-nano composite packaging films could be considered a potential candidate for fruit packaging.


Biodegradable Active Bio-Nanocomposite Film For The Enhanced Shelf Life Of Tomatoes, Kalpani Y. Perera, Shubham Sharma, Brendan Duffy, Amit K. Jaiswal, Swarna Jaiswal May 2022

Biodegradable Active Bio-Nanocomposite Film For The Enhanced Shelf Life Of Tomatoes, Kalpani Y. Perera, Shubham Sharma, Brendan Duffy, Amit K. Jaiswal, Swarna Jaiswal

Articles

The increased environmental pollution has led to finding sustainable solutions for non-renewable plastic-based food packaging materials. Thus, the use of biomaterial-based packaging material has become an immense trend. This work aims at developing an antimicrobial biodegradable chitosan-alginate bio-nano composite film with TiO2 nanoparticle (NPs) for food packaging applications. The film was developed by a solution casting method. The chemical, mechanical, thermal, barrier, antimicrobial, and biodegradable properties of the packaging films were evaluated. Packaging studies were performed for 15 days for cherry tomatoes. The designed packaging material had enhanced the mechanical properties with a significantly (p < 0.05) higher tensile strength of 15.76 folds and 2 fold higher elongation at break. The UV barrier properties increased by 88.6%, while the film transparency decreased by 87.23%. Molecular interaction of N-H covalent bonds was observed between alginate and chitosan together with TiO2 NPs. The developed bio-nano composite film showed antimicrobial activity against foodborne pathogens E. coli, S. aureus, S. typhi, and L. monocytogene with a log reduction of 7.08, 7.28, 6.04 & 6.02 log CFU/ml respectively at 24 hours incubation period. The film was completely biodegraded and a weight loss of 89.06% was observed in bio-nanocomposite film during the 3 months. Shelf-life estimation of cherry tomato using developed packaging films showed an increase in the shelf-life up to 8 days with stable pH, total soluble solids, and weight with no bacterial growth when packaged with prepared film. Owing to their improved mechanical, UV barrier, antibacterial, and biodegradability, the prepared active bio-nano composite packaging films could be considered a potential candidate for fruit packaging.


Biodegradable Nanocomposite Multifunctional Packaging Film For Fruits, Kalpani Y. Perera, Shubham Sharma, Dileswar Pradhan, Amit Jaiswal, Swarna Jaiswal Sep 2021

Biodegradable Nanocomposite Multifunctional Packaging Film For Fruits, Kalpani Y. Perera, Shubham Sharma, Dileswar Pradhan, Amit Jaiswal, Swarna Jaiswal

Articles

Biopolymers have been used in food packaging in recent years due to high pollution rates and decreased biodegradation of synthetic polymers. Chitosan (CH) and Sodium alginate (SA) are both biodegradable biopolymers with excellent film forming capability. TiO2 nanoparticles have high mechanical strength, degradation ability and antimicrobial properties, which are beneficial in food packaging. The aim of the current work is to develop the biodegradable multifunctional nanocomposite film for fruit (i.e., Pear) packaging applications. Bionanocomposite film was prepared by solvent casting method using CH-SA and various concentrations of TiO2. The multifunctional properties such as UV barrier, thermal, water retention, mechanical, chemical, …


Enzyme Stabilization In Hierarchical Biocatalytic Food Packaging And Processing Materials, Dana Erin Wong Jul 2016

Enzyme Stabilization In Hierarchical Biocatalytic Food Packaging And Processing Materials, Dana Erin Wong

Doctoral Dissertations

The partnership of biocatalysts and solid support materials provides many opportunities for bioactive packaging and bioprocessing aids beneficial to the agricultural and food industries. Biocatalysis, or reactions modulated by enzymes, allows bioactive materials to assist in bringing a substrate to product. Enzymes are proteins which catalyze reactions by lowering the activation energy required to drive the production of a desired product. Enzymes are commonly utilized in food processing as catalysts with specificity in order to enhance product quality through the production of beneficial food components, and to break down undesirable components that may be harmful or may decrease product quality. …