Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Additive Manufacturing

Discipline
Institution
Publication Year
Publication
Publication Type

Articles 1 - 30 of 82

Full-Text Articles in Materials Science and Engineering

A Comparison Of Beamforming Characteristics In Isotropic And Composite Plate Structures For Use In Structural Health Monitoring, Sarah Ketchersid Mar 2024

A Comparison Of Beamforming Characteristics In Isotropic And Composite Plate Structures For Use In Structural Health Monitoring, Sarah Ketchersid

Doctoral Dissertations and Master's Theses

Structural health monitoring in plate-like simple structures using phased array beamsteering of guided Lamb waves is useful in damage detection and evaluation efforts. Lamb waves can be effectively used for beamsteering using a linear array. The experimentation primarily focuses on beamsteering in the aluminum panel, which involves developing a simulation based on extracted data to visualize the dispersion of waves across the panel. By evaluating parameters such as slowness, velocity, and amplitude direction and variation for a specific metallic plate, the wavefront generated by a single wave source can be represented as a function of propagation angle and distance from …


Improving Cast Steel Rail Coupler Fatigue Resistance Through Local Wire-Arc Additive Manufacturing, Andrew M. Bunge Jan 2024

Improving Cast Steel Rail Coupler Fatigue Resistance Through Local Wire-Arc Additive Manufacturing, Andrew M. Bunge

Dissertations, Master's Theses and Master's Reports

Every year, thousands of cast-steel railcar couplers suffer from corrosion-initiated fatigue cracking in similar areas of the coupler’s knuckle; between 2015 and 2018 about 90,000 knuckles were replaced, otherwise these couplers would have been at risk for unexpected failures. These types of couplers have been common in industrial use as early as 1932, hence it is desirable for a countermeasure to the fatigue cracking that does not involve significantly altering the geometry or casting process. Wire arc additive manufacturing (WAM) is a developing technology which boasts the ability to produce complex near-net-shape components; however, less attention has been paid to …


Cobalt Chromium In Biomedical Applications And The Development Of A Pspp Map, Nouralhouda Jamal Dec 2023

Cobalt Chromium In Biomedical Applications And The Development Of A Pspp Map, Nouralhouda Jamal

Bagley College of Engineering Publications and Scholarship

During the world wars, Cobalt-Chromium (Co-Cr) alloys gained prominence for their use in aircraft engine components, where they exhibited high temperature strength and durability. They are used in a wide range of industries due to their unique set of qualities, particularly strength, corrosion resistance, and biocompatibility. They have emerged as versatile materials with a broad spectrum of applications, from aerospace and automotive components to biomedical implants.

This paper presents a thorough analysis of its composition, processing techniques, microstructure, mechanical properties, and performance characteristics. The primary goal of this project is to develop a PSPP (Process, structure, properties, and performance) map …


Additive Manufacturing Of Magnetic Materials For Electric Motor And Generator Applications, Haobo Wang Dec 2023

Additive Manufacturing Of Magnetic Materials For Electric Motor And Generator Applications, Haobo Wang

Doctoral Dissertations

This work details the research into the 3D Printing, also known as Additive Manufacturing (AM), of both impermanent and permanent magnets. This work also details the research in enabling such AM magnets in electrical machine applications, primarily motors and generators. The AM processes of many types of magnets are described in detail. The material properties of such AM magnets are also described. The two main types of AM magnets that are discussed in detail are AM NdFeB, and AM Silicon Steel. The implementation of AM NdFeB as rotor magnets, and the implementation of AM Silicon Steel as rotor and stator …


An Investigation Into The Challenges Of Contemporary Additive Manufacturing: Insights Into The Metallurgical Response Of Materials And Relevant Solution, Huan Ding Nov 2023

An Investigation Into The Challenges Of Contemporary Additive Manufacturing: Insights Into The Metallurgical Response Of Materials And Relevant Solution, Huan Ding

LSU Doctoral Dissertations

Additive Manufacturing (AM) has gained attention in recent years due to its unique capabilities in the fabrication of complex parts. As with any new research, there is still a lack of sufficient understanding in the field of additive manufacturing, and further investigation is needed to solve existing problems. Ultimately, the aim is to enable the widespread use of AM components across various industries.

Chapter One provides a brief introduction to the background and current bottlenecks of additive manufacturing technology. Chapter two focuses on the development of high-strength 7075 aluminum alloy (Al7075) for Fused Deposition Modeling and Sintering (FDMS) technology. Al7075 …


Additive Manufacturing For Medical Education, Michael Noon Oct 2023

Additive Manufacturing For Medical Education, Michael Noon

College of Engineering Summer Undergraduate Research Program

A growing body of evidence is suggesting that anatomical knowledge, the keystone of many medical specialties, is suffering among new graduates. While a host of reasons are provided, one common thread that many point to is the decline of cadaver dissections in the classroom. Many virtual audio-visual tools are used to address this gap, yet evidence has shown their ineffectiveness. Given this gap, the high degree of flexibility found in additive manufacturing (AM), and the many uses AM has already found in the medical field, we propose its use to fill this gap, allowing for students to learn with touch …


Additive Manufacturing Of Stretchable Strain Sensors: Fabrication, Optimization And Application, John Nady Shihat Bastawrous Jun 2023

Additive Manufacturing Of Stretchable Strain Sensors: Fabrication, Optimization And Application, John Nady Shihat Bastawrous

Theses and Dissertations

In this project, a novel strain sensor design is fabricated employing different additive manufacturing techniques. The spring sensor's primary material is PLA-Like resin with a nanocomposite encapsulation layer as the functional material. The main principle of Straining the sensors results in a change in resistivity as the distances among the conductive carbon particles change according to the strain applied.

Sensor fabrication consists of two parts: spring manufacturing and development of nanocomposite encapsulation The nanocomposite matrix is developed through the dispersion of Graphene and Carbon nanotubes in Thermoplastic Polyurethane through sonication and magnetic hotplate stirring. While the spring itself is manufactured …


Improving The Tensile Mechanical Properties Of Direct Energy Deposited (Ded) Inconel 718 Aircraft Components Using A Standard Heat Treatment, Spencer Vincent Flynn Jun 2023

Improving The Tensile Mechanical Properties Of Direct Energy Deposited (Ded) Inconel 718 Aircraft Components Using A Standard Heat Treatment, Spencer Vincent Flynn

Materials Engineering

This project aimed to improve the mechanical properties of as-printed additively manufactured Inconel 718 samples using a heat treatment usually used for cast and wrought Inconel 718. The mechanical properties sought to be optimized were yield strength, ultimate tensile strength, elongation, and reduction in area. The property goals were to match or exceed those of cast and heat treated Inconel 718. Wire-fed electron beam direct energy deposition (DED) was used to manufacture the samples, which were then heat treated using the AMS 5663 standard in an inert atmosphere. The samples were then tested in tension to obtain data on their …


A Study Of The Effect Of Machine Parameters On Defects Produced In Eos Additive Manufacturing Builds, Tina White Malone May 2023

A Study Of The Effect Of Machine Parameters On Defects Produced In Eos Additive Manufacturing Builds, Tina White Malone

Doctoral Dissertations

5Additive Manufacturing (AM) is defined in the American Society for Testing and Materials (ASTM) standard F2792 as “a process of joining materials to make objects from 3D model data, usually layer upon layer, as opposed to subtractive manufacturing methodologies. It provides an advanced method for building complex geometries and parts for high performance with a significant cost savings. 55It’s advantages include the reduced need for tools and molds commonly used in manufacturing, a large reduction in wasted material, much shorter manufacturing cycles for the building of hardware, and its uniquely inherent ability to produce much more complex shapes. …


Al-Ce-Mn Solidification Phase Selection And Solid-State Phase Transformations, Kevin Dean Sisco May 2023

Al-Ce-Mn Solidification Phase Selection And Solid-State Phase Transformations, Kevin Dean Sisco

Doctoral Dissertations

The design of Al alloys has become an important topic in Additive Manufacturing (AM). The adoption of Al alloys to AM has been difficult because traditional alloys are prone to processing related defects such as solidification cracking. The Al-10Si-Mg alloy was initially adopted because of its resistance to solidification cracking. However, the Al-10Si-Mg alloy has reduced tensile properties especially at high temperatures, where the silicon phase coarsens readily. Therefore, efforts have been made to design new Al alloys that can take advantage of the AM processing. The goal of new alloys is to optimize based on rapid solidification conditions, while …


Optimization Of Porosity In Cold Spray Produced Copper And Zinc Coatings, Cameron Hughes May 2023

Optimization Of Porosity In Cold Spray Produced Copper And Zinc Coatings, Cameron Hughes

Graduate Theses & Non-Theses

Since its invention in 1981, the cold spray (CS) additive manufacturing (AM) process has been studied and optimized to produce well-adhered, dense material coatings. CS can operate at a wide range of temperatures if the feed material remains in a solid state. Copper and zinc were studied to characterize and understand the effects of heating element voltage, travel speed, and standoff distance on deposit porosity, grain size, microhardness, and coating thickness. Samples were sprayed on 3.2 mm x 25 mm x 150 mm 6061 aluminum substrates. Sections were taken from the middle of the samples to represent steady-state conditions. Sample …


Particle Migration In Large Cross-Section Ceramic On-Demand Extrusion Components, Austin J. Martin, Wenbin Li, Jeremy Lee Watts, Gregory E. Hilmas, Ming-Chuan Leu, Tieshu Huang Mar 2023

Particle Migration In Large Cross-Section Ceramic On-Demand Extrusion Components, Austin J. Martin, Wenbin Li, Jeremy Lee Watts, Gregory E. Hilmas, Ming-Chuan Leu, Tieshu Huang

Materials Science and Engineering Faculty Research & Creative Works

Ceramic On-Demand Extrusion (CODE) is a direct ink writing process which allows for the creation of near theoretically dense ceramic components with large cross-sections due to oil-assisted drying. Yttria-stabilized zirconia (YSZ) colloidal pastes (∼d50 ≲ 1 µm) were used in CODE to produce dense (multi-road infill and ≳ 98% relative density), large continuous volume (> 1 cm3), and high fidelity (nozzle diameters ≲ 1 mm) structural ceramic components. However, many of these printed components underwent significant particle migration after forming. The reason for this particle migration defect was investigated using the coffee-ring effect for dilute solutions and rheological methods for …


Particle Migration In Large Cross-Section Ceramic On-Demand Extrusion Components, Austin J. Martin, Wenbin Li, Jeremy Lee Watts, Gregory E. Hilmas, Ming-Chuan Leu, Tieshu Huang Mar 2023

Particle Migration In Large Cross-Section Ceramic On-Demand Extrusion Components, Austin J. Martin, Wenbin Li, Jeremy Lee Watts, Gregory E. Hilmas, Ming-Chuan Leu, Tieshu Huang

Mathematics and Statistics Faculty Research & Creative Works

Ceramic On-Demand Extrusion (CODE) is a direct ink writing process which allows for the creation of near theoretically dense ceramic components with large cross-sections due to oil-assisted drying. Yttria-stabilized zirconia (YSZ) colloidal pastes (∼d50 ≲ 1 µm) were used in CODE to produce dense (multi-road infill and ≳ 98% relative density), large continuous volume (> 1 cm3), and high fidelity (nozzle diameters ≲ 1 mm) structural ceramic components. However, many of these printed components underwent significant particle migration after forming. The reason for this particle migration defect was investigated using the coffee-ring effect for dilute solutions and rheological methods for …


Particle Migration In Large Cross-Section Ceramic On-Demand Extrusion Components, Austin J. Martin, Wenbin Li, Jeremy Lee Watts, Gregory E. Hilmas, Ming-Chuan Leu, Tieshu Huang Mar 2023

Particle Migration In Large Cross-Section Ceramic On-Demand Extrusion Components, Austin J. Martin, Wenbin Li, Jeremy Lee Watts, Gregory E. Hilmas, Ming-Chuan Leu, Tieshu Huang

Materials Science and Engineering Faculty Research & Creative Works

Ceramic On-Demand Extrusion (CODE) is a direct ink writing process which allows for the creation of near theoretically dense ceramic components with large cross-sections due to oil-assisted drying. Yttria-stabilized zirconia (YSZ) colloidal pastes (∼d50 ≲ 1 µm) were used in CODE to produce dense (multi-road infill and ≳ 98% relative density), large continuous volume (> 1 cm3), and high fidelity (nozzle diameters ≲ 1 mm) structural ceramic components. However, many of these printed components underwent significant particle migration after forming. The reason for this particle migration defect was investigated using the coffee-ring effect for dilute solutions and rheological methods for …


Characterization Of Virgin, Re-Used, And Oxygen-Reduced Copper Powders Processed By The Plasma Spheroidization Process, M. Hossein Sehhat, David Perez-Palomino, Connor Wiedemeier, Tristan Cullom, Joseph William Newkirk Jan 2023

Characterization Of Virgin, Re-Used, And Oxygen-Reduced Copper Powders Processed By The Plasma Spheroidization Process, M. Hossein Sehhat, David Perez-Palomino, Connor Wiedemeier, Tristan Cullom, Joseph William Newkirk

Materials Science and Engineering Faculty Research & Creative Works

Fabrication of parts with high mechanical properties heavily depend on the quality of powder deployed in the fabrication process. Copper powder in three different powder types were spheroidized using radio-frequency inductively coupled plasma (ICP) spheroidization process (TekSphero-15 system). The characterized powders include virgin powder as purchased from the powder manufacturer, powder used in electron beam powder bed fusion (EB-PBF) process, and reconditioned powder, which was used powder that underwent an oxygen-reduction treatment. The goal of spheroidizing these powder types was to evaluate the change in powder morphology, the possibility of enhancing the powder properties back to their as-received conditions, and …


Characterization Of Virgin, Re-Used, And Oxygen-Reduced Copper Powders Processed By The Plasma Spheroidization Process, M. Hossein Sehhat, David Perez-Palomino, Connor Wiedemeier, Tristan Cullom, Joseph William Newkirk Jan 2023

Characterization Of Virgin, Re-Used, And Oxygen-Reduced Copper Powders Processed By The Plasma Spheroidization Process, M. Hossein Sehhat, David Perez-Palomino, Connor Wiedemeier, Tristan Cullom, Joseph William Newkirk

Mathematics and Statistics Faculty Research & Creative Works

Fabrication of parts with high mechanical properties heavily depend on the quality of powder deployed in the fabrication process. Copper powder in three different powder types were spheroidized using radio-frequency inductively coupled plasma (ICP) spheroidization process (TekSphero-15 system). The characterized powders include virgin powder as purchased from the powder manufacturer, powder used in electron beam powder bed fusion (EB-PBF) process, and reconditioned powder, which was used powder that underwent an oxygen-reduction treatment. The goal of spheroidizing these powder types was to evaluate the change in powder morphology, the possibility of enhancing the powder properties back to their as-received conditions, and …


Characterization Of Virgin, Re-Used, And Oxygen-Reduced Copper Powders Processed By The Plasma Spheroidization Process, M. Hossein Sehhat, David Perez-Palomino, Connor Wiedemeier, Tristan Cullom, Joseph William Newkirk Jan 2023

Characterization Of Virgin, Re-Used, And Oxygen-Reduced Copper Powders Processed By The Plasma Spheroidization Process, M. Hossein Sehhat, David Perez-Palomino, Connor Wiedemeier, Tristan Cullom, Joseph William Newkirk

Materials Science and Engineering Faculty Research & Creative Works

Fabrication of parts with high mechanical properties heavily depend on the quality of powder deployed in the fabrication process. Copper powder in three different powder types were spheroidized using radio-frequency inductively coupled plasma (ICP) spheroidization process (TekSphero-15 system). The characterized powders include virgin powder as purchased from the powder manufacturer, powder used in electron beam powder bed fusion (EB-PBF) process, and reconditioned powder, which was used powder that underwent an oxygen-reduction treatment. The goal of spheroidizing these powder types was to evaluate the change in powder morphology, the possibility of enhancing the powder properties back to their as-received conditions, and …


An Experimental Study On The Mechanical Properties And Chemical Composition Of Lcd 3d Printed Specimens, Sebastian Gomez Jan 2023

An Experimental Study On The Mechanical Properties And Chemical Composition Of Lcd 3d Printed Specimens, Sebastian Gomez

Electronic Theses and Dissertations

Additive manufacturing technologies have been enhanced throughout the years yet have surprised the manufacturing industry due to their high-end surface finish and dimensional accuracy. Different experiments have been done to identify a specific phenomenon known in the vat-polymerization field. Distortion and dimensional inaccuracy tend to affect the overall properties of the process, either physical or chemical. This approach allows the understanding of how the physical properties have been affected and how to study the chemical properties to avoid this type of phenomenon. The chemical reaction between polymer and UV light has been studied and experimented with to the point that …


Effects Of Surface Noise On Printing Artifacts: An Artistic Approach To Hiding Print Artifacts, Samuel New Dec 2022

Effects Of Surface Noise On Printing Artifacts: An Artistic Approach To Hiding Print Artifacts, Samuel New

All Theses

This research focuses on improving the quality of Fused Filament Fabrication (FFF) 3D printing by using fractal noise to mask certain print artifacts (e.g. layer lines and stair-stepping). The use of textures is quite common in digital sculpting for aesthetic reasons. This study focuses on finding specific textures that minimize visible 3D print artifacts.


Prediction Of Meltpool Depth In Laser Powder Bed Fusion Using In-Process Sensor Data, Part-Level Thermal Simulations, And Machine Learning, Grant King Dec 2022

Prediction Of Meltpool Depth In Laser Powder Bed Fusion Using In-Process Sensor Data, Part-Level Thermal Simulations, And Machine Learning, Grant King

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

The goal of this thesis is the prevention of flaw formation in laser powder bed fusion additive manufacturing process. As a step towards this goal, the objective of this work is to predict meltpool depth as a function of in-process sensor data, part-level thermal simulations, and machine learning. As motivated in NASA's Marshall Space Flight Center specification 3716, prediction of meltpool depth is important because: (1) it can serve as a surrogate to estimate process status without the need for expensive post-process characterization, and (2) the meltpool depth provides an avenue for rapid qualification of microstructure evolution. To achieve the …


A Machine Learning Approach To Robotic Additive Manufacturing Of Uv-Curable Polymers Using Direct Ink Writing, Luis A. Velazquez Nov 2022

A Machine Learning Approach To Robotic Additive Manufacturing Of Uv-Curable Polymers Using Direct Ink Writing, Luis A. Velazquez

LSU Master's Theses

This thesis presents the design and implementation of a robotic additive manufacturing system that uses ultraviolet (UV)-curable thermoset polymers. Its design considers future applications involving free-standing 3D printing by means of partial UV curing and the fabrication of samples that are reinforced with fillers or fibers to manufacture complex-shape objects.

The proposed setup integrates a custom-built extruder with a UR5e collaborative manipulator. The capabilities of the system were demonstrated using Anycubic resin formulations containing fumed silica (FS) at varying weight fractions from 2.8 to 8 wt%. To fully cure the specimens after fabrication, a UV chamber was used. Then, measurements …


3d Printed Multicomponent Polymer Based Materials Via Hybrid Filaments: Fabrication And Characterization, Erik Antonio Aug 2022

3d Printed Multicomponent Polymer Based Materials Via Hybrid Filaments: Fabrication And Characterization, Erik Antonio

All Dissertations

Additive manufacturing, also known as 3D printing, promises a manufacturing revolution for both industry and academic circles. One of the most widely used method of 3D printing is Fused Deposition Modeling (FDM) or Fused Filament Fabrication (FFF), which requires a thermoplastic filament to be directed towards a heating block and then deposited via extrusion layer by layer to produce a finished part. However, there are significant issues with this technology, mainly a limitation on the materials available for use and mechanical property deficiencies when compared to traditional manufacturing. These issues are brought about by the temperature limited nature of the …


Tini-Based Bi-Metallic Shape-Memory Alloy By Laser-Directed Energy Deposition, Yitao Chen, Cesar Ortiz Rios, Braden Mclain, Joseph William Newkirk, Frank W. Liou Jun 2022

Tini-Based Bi-Metallic Shape-Memory Alloy By Laser-Directed Energy Deposition, Yitao Chen, Cesar Ortiz Rios, Braden Mclain, Joseph William Newkirk, Frank W. Liou

Materials Science and Engineering Faculty Research & Creative Works

In this study, laser-directed energy deposition was applied to build a Ti-rich ternary Ti-Ni-Cu shape-memory alloy onto a TiNi shape-memory alloy substrate to realize the joining of the multifunctional bi-metallic shape-memory alloy structure. The cost-effective Ti, Ni, and Cu elemental powder blend was used for raw materials. Various material characterization approaches were applied to reveal different material properties in two sections. The as-fabricated Ti-Ni-Cu alloy microstructure has the TiNi phase as the matrix with Ti2Ni secondary precipitates. The hardness shows no high values indicating that the major phase is not hard intermetallics. A bonding strength of 569.1 MPa …


In-Situ Defect Detection Using Acoustic Vibration Monitoring For Additive Manufacturing Processes, Ali Harake Jun 2022

In-Situ Defect Detection Using Acoustic Vibration Monitoring For Additive Manufacturing Processes, Ali Harake

Master's Theses

The world of additive manufacturing revolves around speed and repeatability. Inherently, the process of 3D printing is plagued with variability that fluctuates with every material and parameter modification. Without proper qualification standards, processes can never become stable enough to produce parts that may be used in aerospace, medical, and construction industries. These industries rely on high quality metrics in order to protect the lives of those who may benefit from them. To establish trust in a process, all points of variation must be controlled and accounted for every part produced. In instances where even the best process controls are enacted, …


Development And Characterization Of Bound Metal Deposition Including Laser Ablation, Alexander J. Watson May 2022

Development And Characterization Of Bound Metal Deposition Including Laser Ablation, Alexander J. Watson

Electronic Theses and Dissertations

Bound Metal Deposition (BMD) is a novel metal additive manufacturing technology in which a metal powder-binder composite paste is layer-wise extruded to form a part, which is then debound and sintered into a solid metal part. Although promising, BMD suffers from shrinkage-induced warpage and an inability to produce fine length scale features. This research addresses these problems by: (1) characterizing warpage of planar parts, and (2) developing a novel laser ablated process to create fine length scale features. First, a 12-factor resolution IV fractional-factorial design of experiments (DOE) was conducted to determine the warpage of planar parts as a function …


Development And Evaluation Of Modeling Approaches For Extrusion-Based Additive Manufacturing Of Thermoplastics, Christopher C. Bock May 2022

Development And Evaluation Of Modeling Approaches For Extrusion-Based Additive Manufacturing Of Thermoplastics, Christopher C. Bock

Electronic Theses and Dissertations

This work focuses on evaluating different modeling approaches and model parameters for thermoplastic AM, with the goal of informing more efficient and effective modeling approaches. First, different modeling approaches were tested and compared to experiments. From this it was found that all three of the modeling approaches provide comparable results and provide similar results to experiments. Then one of the modeling approaches was tested on large scale geometries, and it was found that the model results matched experiments closely. Then the effect of different material properties was evaluated, this was done by performing a fractional factorial design of experiments where …


Quasi-Static Multifunctional Characterization Of 3d-Printed Carbon Fiber Composites For Compressive-Electrical Properties, Ritesh Ghimire, Frank W. Liou Jan 2022

Quasi-Static Multifunctional Characterization Of 3d-Printed Carbon Fiber Composites For Compressive-Electrical Properties, Ritesh Ghimire, Frank W. Liou

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Multifunctional carbon fiber composites provide promising results such as high strength-to-weight ratio, thermal and electrical conductivity, high-intensity radiated field, etc. for aerospace applications. Tailoring the electrical and structural properties of 3D-printed composites is the critical step for multifunctional performance. This paper presents a novel method for evaluating the effects of the coating material system on the continuous carbon fiber strand on the multifunctional properties of 3D-printed composites and the material's microstructure. A new method was proposed for the quasi-static characterization of the Compressive-Electrical properties on the additively manufactured continuous carbon fiber solid laminate composites. In this paper, compressive and electrical …


Uncertainties Induced By Processing Parameter Variation In Selective Laser Melting Of Ti6al4v Revealed By In-Situ X-Ray Imaging, Zachary A. Young, Meelap M. Coday, Qilin Guo, Minglei Qu, S. Mohammad H. Hojjatzadeh, Luis I. Escano, Kamel Fezzaa, Tao Sun, Lianyi Chen Jan 2022

Uncertainties Induced By Processing Parameter Variation In Selective Laser Melting Of Ti6al4v Revealed By In-Situ X-Ray Imaging, Zachary A. Young, Meelap M. Coday, Qilin Guo, Minglei Qu, S. Mohammad H. Hojjatzadeh, Luis I. Escano, Kamel Fezzaa, Tao Sun, Lianyi Chen

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Selective laser melting (SLM) additive manufacturing (AM) exhibits uncertainties, where variations in build quality are present despite utilizing the same optimized processing parameters. In this work, we identify the sources of uncertainty in SLM process by in-situ characterization of SLM dynamics induced by small variations in processing parameters. We show that variations in the laser beam size, laser power, laser scan speed, and powder layer thickness result in significant variations in the depression zone, melt pool, and spatter behavior. On average, a small deviation of only ~5% from the optimized/reference laser processing parameter resulted in a ~10% or greater change …


Recycled Printer Filament, Charlotte Hyland, Troy D. Molinar Jan 2022

Recycled Printer Filament, Charlotte Hyland, Troy D. Molinar

Williams Honors College, Honors Research Projects

The purpose of this research is to examine the effects of recycling PLA filament for 3D printing on its material properties. After examining these effects, PLA and carbon fiber additives were mixed with recycled PLA pellets in different ratios to attempt to regain material properties lost in the recycling process. To complete these findings, an experiment was design and executed.

The research found that tensile strength during multiple iterations of recycling remained mostly unaffected, however, the strain degraded exponentially. In the PLA additive study, high ratios of PLA additive were able to increase the strength and strain properties of the …


Development Of Oxide Dispersion Strengthening (Ods) Alloys Powder For Additive Manufacturing, Changyu Ma Jan 2022

Development Of Oxide Dispersion Strengthening (Ods) Alloys Powder For Additive Manufacturing, Changyu Ma

Graduate Theses, Dissertations, and Problem Reports

Additive manufacturing (AM) fabricated oxide dispersion strengthened (ODS) alloys are given high expectations for critical structural components such as the first stage turbine blade for their excellent creep strength and oxidation resistance compared to superalloys. However, the powder feedstock processing is still an open question since current state-of-the-art processes are not capable of achieving ultrafine strengthening elements such as Y2O3 in powder which leads to agglomeration issues in as-consolidated alloys. In this research, the oxidation behavior and stability of ultrafine oxide in AM-printed alloys using mechanically alloyed powders were evaluated at 1100 oC. In addition, a …