Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Materials Science and Engineering

Clove Essential Oil And Nanoclays-Based Active Food Packaging, Kalpani Y. Perera, Shubham Sharma, Amit K. Jaiswal, Swarna Jaiswal Dec 2022

Clove Essential Oil And Nanoclays-Based Active Food Packaging, Kalpani Y. Perera, Shubham Sharma, Amit K. Jaiswal, Swarna Jaiswal

Articles

Active food packaging materials enhance the shelf-life of food products while reducing food waste. The current study aims to develop a biodegradable active food packaging material. The food packaging material was developed with the incorporation of clove essential oil, sodium alginate, gelatin, and nanoclay films were prepared. The influences of nanoclay and clove on the surface, optical, mechanical, chemical, barrier, and pH-indicating properties were studied. The lightness and yellowness increased by 1.06 folds and 3.34 folds when compared to clove (control), respectively. The UV barrier property 0.08±0.01nm in all films, while 8.37 folds reduction in transparency has been observed as …


Nanoclays And Curcumin Based Food Packaging Material For Intelligent Food Packaging Applications, Kalpani Y. Perera, Swarna Jaiswal, Amit K. Jaiswal, Shubham Sharma Dec 2022

Nanoclays And Curcumin Based Food Packaging Material For Intelligent Food Packaging Applications, Kalpani Y. Perera, Swarna Jaiswal, Amit K. Jaiswal, Shubham Sharma

Articles

Bionanocomposite packaging eco-friendly alternatives with enhanced characteristics. This study aimed to develop a bionanocomposite intelligent packaging. Sodium alginate, gelatin, Curcumin (Cur), glycerol, and Nanoclay (NC) films were prepared. The influences of nanoclay and curcumin on the surface, optical, mechanical, chemical, barrier, and pH-indicating properties were studied. The results showed that the lightness of films was reduced by 1.28 folds compared to NC (control) film, while the yellowness of films increased by 5.82 folds. Film transparency was reduced by 9.3 folds and a 3.46 folds increase in UV barrier properties was observed compared to NC (control) film. The highest tensile strength …


Cold Plasma Technology In Food Packaging, Kalpani Y. Perera, Jack Prendeville, Amit K. Jaiswal, Swarna Jaiswal Dec 2022

Cold Plasma Technology In Food Packaging, Kalpani Y. Perera, Jack Prendeville, Amit K. Jaiswal, Swarna Jaiswal

Articles

Cold plasma (CP) is an effective strategy to alter the limitations of biopolymer materials for food packaging applications. Biopolymers such as polysaccharides and proteins are known to be sustainable materials with excellent film-forming properties. Bio-based films can be used as an alternative to traditional plastic packaging. There are limitations to biopolymer packaging materials such as hydrophobicity, poor barrier, and thermos-mechanical properties. For this reason, biopolymers must be modified to create a packaging material with the desired applicability. CP is an effective method to enhance the functionality and interfacial features of biopolymers. It etches the film surface allowing for better adhesion …


Biodegradable Active Bio-Nanocomposite Film For The Enhanced Shelf Life Of Tomatoes, Kalpani Y. Perera, Shubham Sharma, Brendan Duffy, Amit K. Jaiswal, Swarna Jaiswal Nov 2022

Biodegradable Active Bio-Nanocomposite Film For The Enhanced Shelf Life Of Tomatoes, Kalpani Y. Perera, Shubham Sharma, Brendan Duffy, Amit K. Jaiswal, Swarna Jaiswal

Articles

The increased environmental pollution has led to finding sustainable solutions for non-renewable plastic-based food packaging materials. Thus, the use of biomaterial-based packaging material has become an immense trend. This work aims at developing an antimicrobial biodegradable chitosanalginate bio-nano composite film with TiO2 nanoparticle (NPs) for food packaging applications. The film was developed by a solution casting method. The chemical, mechanical, thermal, barrier, antimicrobial, and biodegradable properties of the packaging films were evaluated. Packaging studies were performed for 15 days for cherry tomatoes. The designed packaging material had enhanced the mechanical properties with a significantly (p < 0.05) higher tensile strength of 15.76 folds and 2 fold higher elongation at break. The UV barrier properties increased by 88.6%, while the film transparency decreased by 87.23%. Molecular interaction of N-H covalent bonds was observed between alginate and chitosan together with TiO2 NPs. The developed bio-nano composite film showed antimicrobial activity against foodborne pathogens E. coli, S. aureus, S. typhi, and L. monocytogene with a log reduction of 7.08, 7.28, 6.04 & 6.02 log CFU/ml respectively at 24 hours incubation period. The film was completely biodegraded and a weight loss of 89.06% was observed in bio-nanocomposite film during the 3 months. Shelf-life estimation of cherry tomato using developed packaging films showed an increase in the shelf-life up to 8 days with stable pH, total soluble solids, and weight with no bacterial growth when packaged with prepared film. Owing to their improved mechanical, UV barrier, antibacterial, and biodegradability, the prepared active bio-nano composite packaging films could be considered a potential candidate for fruit packaging.


Sodium Alginate, Nanoclay And Curcumin Based Food Packaging Material For Intelligent Food Packaging Applications, Kalpani Y. Perera, Máille Hopkins, Shubham Sharma, Brendan Duffy, Amit K. Jaiswal, Swarna Jaiswal Nov 2022

Sodium Alginate, Nanoclay And Curcumin Based Food Packaging Material For Intelligent Food Packaging Applications, Kalpani Y. Perera, Máille Hopkins, Shubham Sharma, Brendan Duffy, Amit K. Jaiswal, Swarna Jaiswal

Articles

Bionanocomposite food packaging contains materials of biological origin which display high-performance activity when compared to biopolymers and are eco-friendly alternatives to conventional packaging materials. Intelligent packaging monitors the condition of the food or environment surrounding the food and communicates changes to the consumer. This study aimed to develop a bionanocomposite intelligent packaging material by utilising sodium alginate, nanoclay and curcumin. Sodium alginate (2 W/V% SA) film incorporated with 0.3 W/V% curcumin (Cur), glycerol, and nanoclay (NC) in various concentrations (0, 0.5, 1 and 2 W/V %) was prepared using the solvent casting method. The influences of nanoclay and curcumin on …


Bio-Based Food Packaging Material For Intelligent Food Packaging Applications For Chicken Fillets, Kalpani Y. Perera, Amit K. Jaiswal, Swarma Jaiswal, Shubham Sharma Sep 2022

Bio-Based Food Packaging Material For Intelligent Food Packaging Applications For Chicken Fillets, Kalpani Y. Perera, Amit K. Jaiswal, Swarma Jaiswal, Shubham Sharma

Articles

Bionanocomposite packaging is made up of bio- based materials that have high performance activity and are ecologically sustainable alternatives to packaging made of synthetic polymers. Intelligent packaging retains track of the state of the food and the environment in which it is stored, and communicates relevant changes to the consumer through visualization or other methods. The aim of this study was to develop a bionanocomposite intelligent packaging material by utilising sodium alginate, gelatin, nanoclay and curcumin. Sodium alginate, gelatin film incorporated with Curcumin (Cur), and Nanoclay (NC) in various concentrations (0% W/V, 0.5% W/V, 1% W/V and 1. 5% W/V) …


A Review Of Current Construction Guidelines To Inform The Design Of Rammed Earth Houses In Seismically Active Zones, David Thompson, Charles Augarde, Juan Pablo Osorio May 2022

A Review Of Current Construction Guidelines To Inform The Design Of Rammed Earth Houses In Seismically Active Zones, David Thompson, Charles Augarde, Juan Pablo Osorio

Articles

Sustainability in the materials we use for construction is a prime concern, focusing on reducing the embodied energy and carbon footprints of the materials used. The cement used in concrete products is responsible for a significant proportion of Man's CO2 emissions and its production requires substantial energy input, as do fired clay products. For this reason, products formed from unfired earthen materials are of increasing interest and the current challenges include devising means of robust design for strength and to address durability concerns. One form of earthen construction that employs an in-situ method is rammed earth, and it is a …


Biodegradable Active Bio-Nanocomposite Film For The Enhanced Shelf Life Of Tomatoes, Kalpani Y. Perera, Shubham Sharma, Brendan Duffy, Amit K. Jaiswal, Swarna Jaiswal May 2022

Biodegradable Active Bio-Nanocomposite Film For The Enhanced Shelf Life Of Tomatoes, Kalpani Y. Perera, Shubham Sharma, Brendan Duffy, Amit K. Jaiswal, Swarna Jaiswal

Articles

The increased environmental pollution has led to finding sustainable solutions for non-renewable plastic-based food packaging materials. Thus, the use of biomaterial-based packaging material has become an immense trend. This work aims at developing an antimicrobial biodegradable chitosan-alginate bio-nano composite film with TiO2 nanoparticle (NPs) for food packaging applications. The film was developed by a solution casting method. The chemical, mechanical, thermal, barrier, antimicrobial, and biodegradable properties of the packaging films were evaluated. Packaging studies were performed for 15 days for cherry tomatoes. The designed packaging material had enhanced the mechanical properties with a significantly (p < 0.05) higher tensile strength of 15.76 folds and 2 fold higher elongation at break. The UV barrier properties increased by 88.6%, while the film transparency decreased by 87.23%. Molecular interaction of N-H covalent bonds was observed between alginate and chitosan together with TiO2 NPs. The developed bio-nano composite film showed antimicrobial activity against foodborne pathogens E. coli, S. aureus, S. typhi, and L. monocytogene with a log reduction of 7.08, 7.28, 6.04 & 6.02 log CFU/ml respectively at 24 hours incubation period. The film was completely biodegraded and a weight loss of 89.06% was observed in bio-nanocomposite film during the 3 months. Shelf-life estimation of cherry tomato using developed packaging films showed an increase in the shelf-life up to 8 days with stable pH, total soluble solids, and weight with no bacterial growth when packaged with prepared film. Owing to their improved mechanical, UV barrier, antibacterial, and biodegradability, the prepared active bio-nano composite packaging films could be considered a potential candidate for fruit packaging.


Controlling Unequal Surface Energy Results Caused By Test Liquids: The Case Of Uv/O3 Treated Pet, Bilge N. Altay, Paul D. Fleming, Md Arifur Rahman, Alexandra Pekarovicova, Bruce Myers, Cem Aydemir, Arif Karademir Apr 2022

Controlling Unequal Surface Energy Results Caused By Test Liquids: The Case Of Uv/O3 Treated Pet, Bilge N. Altay, Paul D. Fleming, Md Arifur Rahman, Alexandra Pekarovicova, Bruce Myers, Cem Aydemir, Arif Karademir

Articles

Ultraviolet/ozone (UV/O3) treatment has been reported to be an effective method to modify properties such as wettability, adhesion or adsorption of plastic surfaces. The change in the surface is measured by contact angle analysis, which employs liquids and their surface tensions (ST) to estimate the surface energy (SE). We found two different practices in the scientific community: (1) the majority of researchers adopted the ST value of liquids from the literature, while (2) other researchers conducted real-time measurements in the lab under ambient conditions prior to SE estimation. To the best of our knowledge, there is no study that compares …


Limits Of Detection Of Mycotoxins By Laminar Flow Strips: A Review, Xinyi Zhao, Hugh Byrne, Christine M. O’Connor, James Curtin, Furong Tian Apr 2022

Limits Of Detection Of Mycotoxins By Laminar Flow Strips: A Review, Xinyi Zhao, Hugh Byrne, Christine M. O’Connor, James Curtin, Furong Tian

Articles

Mycotoxins are secondary metabolic products of fungi. They are poisonous, carcinogenic, and mutagenic in nature and pose a serious health threat to both humans and animals, causing severe illnesses and even death. Rapid, simple and low-cost methods of detection of mycotoxins are of immense importance and in great demand in the food and beverage industry, as well as in agriculture and environmental monitoring, and, for this purpose, lateral flow immunochromatographic strips (ICSTs) have been widely used in food safety and environmental monitoring. The literature to date describing the development of ICSTs for the detection of different types of mycotoxins using …


Active Packaging Film Based On Poly Lactide-Poly (Butylene Adipate-Co-Terephthalate) Blends Incorporated With Tannic Acid And Gallic Acid For The Prolonged Shelf Life Of Cherry Tomato, Shubham Sharma, Kalpani Perera, Dileswar Pradhan, Brendan Duffy, Amit Jaiswal, Swarna Jaiswal Jan 2022

Active Packaging Film Based On Poly Lactide-Poly (Butylene Adipate-Co-Terephthalate) Blends Incorporated With Tannic Acid And Gallic Acid For The Prolonged Shelf Life Of Cherry Tomato, Shubham Sharma, Kalpani Perera, Dileswar Pradhan, Brendan Duffy, Amit Jaiswal, Swarna Jaiswal

Articles

The antimicrobial property is the key feature of active packaging. Biological macromolecules such as tannic and gallic acids are naturally found in plants such as tea, fruits, berries, and grapes. The incorporation of tannic acid (TA) and gallic acid (GA) in the biodegradable polymer blend Poly Lactide-Poly (Butylene Adipate-Co-Terephthalate) (PLA-PBAT) was used in this study to assess the potential of active packaging. TA and GA (10 wt%) composite films showed a 65%–66% increase in the UV barrier property. The tensile strength value increased after the incorporation of TA and GA (10 wt%), respectively. Overall, 1.67 and 2.2 log reductions in …


Carbon Nanotube Coated Fibrous Tubes For Highly Stretchable Strain Sensors Having High Linearity, Chenchen Li, Bangze Zhou, Yanfen Zhou, Jianwei Ma, Fenglei Zhou, Shaojuan Chen, Stephen Jerrams, Liang Jiang Jan 2022

Carbon Nanotube Coated Fibrous Tubes For Highly Stretchable Strain Sensors Having High Linearity, Chenchen Li, Bangze Zhou, Yanfen Zhou, Jianwei Ma, Fenglei Zhou, Shaojuan Chen, Stephen Jerrams, Liang Jiang

Articles

Strain sensors are currently limited by an inability to operate over large deformations or to exhibit linear responses to strain. Producing strain sensors meeting these criteria remains a particularly difficult challenge. In this work, the fabrication of a highly flexible strain sensor based on electrospun thermoplastic polyurethane (TPU) fibrous tubes comprising wavy and oriented fibers coated with carboxylated multiwall carbon nanotubes (CNTs) is described. By combining spraying and ultrasonic-assisted deposition, the number of CNTs deposited on the electrospun TPU fibrous tube could reach 12 wt%, which can potentially lead to the formation of an excellent conductive network with high conductivity …


A Flexible Dual-Mode Pressure Sensor With Ultra-High Sensitivity Based On Bto@Mwcnts Core-Shell Nanofibers, Bangze Zhou, Chenchen Li, Yanfen Zhou, Zhanxu Liu, Xue Gao, Xueqin Wang, Liang Jiang, Mingwei Tian, Feng-Lei Zhou, Stephen Jerrams, Jianyong Yu Jan 2022

A Flexible Dual-Mode Pressure Sensor With Ultra-High Sensitivity Based On Bto@Mwcnts Core-Shell Nanofibers, Bangze Zhou, Chenchen Li, Yanfen Zhou, Zhanxu Liu, Xue Gao, Xueqin Wang, Liang Jiang, Mingwei Tian, Feng-Lei Zhou, Stephen Jerrams, Jianyong Yu

Articles

Wearable flexible sensors have developed rapidly in recent years because of their improved capacity to detect human motion in wide-ranging situations. In order to meet the requirements of flexibility and low detection limits, a new pressure sensor was fabricated based on electrospun barium titanate/multi-wall carbon nanotubes (BTO@MWCNTs) core-shell nanofibers coated with styrene-ethylene-butene-styrene block copolymer (SEBS). The sensor material (BTO@MWCNTs/SEBS) had a SEBS to BTO/MWCNTs mass ratio of 20:1 and exhibited an excellent piezoelectricity over a wide range of workable pressures from 1 to 50 kPa, higher output current of 56.37 nA and a superior piezoresistivity over a broad working range …