Open Access. Powered by Scholars. Published by Universities.®

Mechanics of Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Department of Mechanical and Materials Engineering: Faculty Publications

Crashworthiness

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Mechanics of Materials

Design Of An Innovative Hybrid Sandwich Protective Device For Offshore Structures, Hozhabr Mozafari, Fabio Distefano, Gabriella Epasto, Linxia Gu, Emanoil Linul, Vincenzo Crupi Sep 2022

Design Of An Innovative Hybrid Sandwich Protective Device For Offshore Structures, Hozhabr Mozafari, Fabio Distefano, Gabriella Epasto, Linxia Gu, Emanoil Linul, Vincenzo Crupi

Department of Mechanical and Materials Engineering: Faculty Publications

Lightweight foam sandwich structures have excellent energy absorption capacity, combined with good mechanical properties and low density. The main goal of this study is to test the application of an innovative hybrid sandwich protective device in an offshore wind turbine (OWT). The results are useful for offshore structure applications. Different lightweight materials (aluminum foam, agglomerated cork, and polyurethane foam) were investigated using experimental tests and numerical simulations. Closed-cell aluminum foam showed the best performance in terms of the energy absorption capacity during an impact. As such, a Metallic Foam Shell (MFS) device was proposed for the fender of offshore wind …


Controllable Energy Absorption Of Double Sided Corrugated Tubes Under Axial Crushing, Hozhabr Mozafari, Shengmao Lin, Linxia Gu Jan 2017

Controllable Energy Absorption Of Double Sided Corrugated Tubes Under Axial Crushing, Hozhabr Mozafari, Shengmao Lin, Linxia Gu

Department of Mechanical and Materials Engineering: Faculty Publications

To maximize the controllable energy absorption of corrugation troughs as observed in the single sided corrugated (SSC) tube, we proposed and tested a new structure design, i.e., double-sided corrugated (DSC) tube made of Al 6060-T6 aluminum alloy or CF1263 carbon/epoxy composite. Finite element models were developed to test the mechanical advantage of the DSC tube in comparison with both SSC and classical straight (S) tubes under axial crushing. Results have shown that the total absorbed energy of the DSC aluminum tube with 14 corrugations was 330% and 32% higher than that of the SSC tube with 14 corrugations and the …