Open Access. Powered by Scholars. Published by Universities.®

Mechanics of Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Mechanics of Materials

Soft Electronics And Sensors For Wearable Healthcare Applications, Li-Wei Lo Aug 2022

Soft Electronics And Sensors For Wearable Healthcare Applications, Li-Wei Lo

McKelvey School of Engineering Theses & Dissertations

Wearable electronics are becoming increasingly essential to personalized medicine by collecting and analyzing massive amounts of biological signals from internal organs, muscles, and blood vessels. Conventional rigid electronics may lead to motion artifacts and errors in collected data due to the mismatches in mechanical properties between human skin. Instead, soft wearable electronics provide a better platform and interface that can form intimate contact and conformably adapt to human skin. In this respect, this thesis focuses on new materials formulation, fabrication, characterization of low-cost, high sensitivity and reliable sensors for wearable health monitoring applications.

More specifically, we have studied the silver …


Synthesis And Consolidation Of Metal Oxide Nanocrystals Via Nonthermal Plasma, Austin Cendejas Aug 2022

Synthesis And Consolidation Of Metal Oxide Nanocrystals Via Nonthermal Plasma, Austin Cendejas

McKelvey School of Engineering Theses & Dissertations

Nonthermal plasmas offer a unique nonequilibrium environment that has been leveraged in a wide variety of applications in the fields of material processing, lighting, and waste management to name a few. In all of these cases, the plasma serves as a source of high energy electrons, ions, reactive gas species, and radicals that interact in several ways with surfaces brought into contact with the plasma. Specifically, nonthermal plasmas have been shown to be very successful in achieving continuous, high-throughput, monodisperse nanocrystals of a wide variety of materials. The crystallinity of nanoparticles synthesized in nonthermal plasmas can be attributed to the …


Plasmonic Nanomaterials-Based Point-Of-Care Biosensors, Rohit Gupta Aug 2022

Plasmonic Nanomaterials-Based Point-Of-Care Biosensors, Rohit Gupta

McKelvey School of Engineering Theses & Dissertations

Point-of-care (POC) biosensors, although rapid and easy-to-use, are orders magnitude less sensitive than laboratory-based tests. Further they are plagued by poor stability of recognition element thus limiting its widespread applicability in resource-limited settings. Therefore, there is a critical need for realizing stable POC biosensors with sensitivity comparable to gold-standard laboratory-based tests. This challenge constitutes the fundamental basis of this dissertation work– to expand access to quality and accurate biodiagnostic tools. At the heart of these solutions lies plasmonic nanoparticles which exhibit unique optical properties which are attractive for label-free and labelled biosensors.Firstly, we improve the stability and applicability of label-free …


The Generation And Transport Of Charged Aerosols: Fundamental Study And Applications In Medicine And Energy Conversion, Hao Zhou Aug 2022

The Generation And Transport Of Charged Aerosols: Fundamental Study And Applications In Medicine And Energy Conversion, Hao Zhou

McKelvey School of Engineering Theses & Dissertations

Charged aerosols have significant implications in the field of functional material synthesis, pharmaceutical coating, and drug delivery. Electrospray systems are an effective methodology for generating highly charged monodispersed droplets in the size range from nanometer to micrometer. The prediction of surface charge, size and morphology of nanoparticles resulting from charged droplets are highly required for the precise control of nanoparticle properties and their effective utilization. However, the evolution of charged droplet is not well understood due to the existence of coulombic fission and ion evaporation processes. Thus, the goal of this dissertation is to elucidate how the precursor properties and …


Design Of Multi-Principal Element Materials Using A Combination Of First-Principles Calculations And Machine Learning, Zhaohan Zhang Aug 2022

Design Of Multi-Principal Element Materials Using A Combination Of First-Principles Calculations And Machine Learning, Zhaohan Zhang

McKelvey School of Engineering Theses & Dissertations

Multiple-principal element materials, including alloys (MPEAs), oxides and other compounds combine several elements on a sub-lattice, which increases the configurational entropy and contributes to their thermodynamic stability. The vast combinatorial design space of multi-principal element materials gives rise to diverse microstructures and unprecedent combination of properties. It also poses a challenge—how to rapidly screen MPEAs with stability and properties for targeted applications. Furthermore, fundamental composition-structure-property relationships in MPEAs are currently missing. In this dissertation, I have used MPEAs as a representative system and investigated the role of chemical composition on their phase-stability and mechanical properties. With a combination of first-principles …