Open Access. Powered by Scholars. Published by Universities.®

Mechanics of Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Mechanics of Materials

Experimental Characterization And Quantification Of Deformation Behavior In A Porous Carbon Fiber Network, Robert N Quammen Jan 2024

Experimental Characterization And Quantification Of Deformation Behavior In A Porous Carbon Fiber Network, Robert N Quammen

Theses and Dissertations--Chemical and Materials Engineering

Due to their wide range of attractive functional properties (such as low thermal conductivity and low density) porous materials are utilized in a variety of applications. In order to characterize these properties and others, the intrinsically heterogeneous microstructures of these materials need to be taken into account. These microstructures result in interactions across multiple length scales spanning several orders of magnitude. This makes the creation of robust computational models and straight-forward predictions of mechanical properties difficult for porous materials. With this in mind, this dissertation aims to provide experimental mechanical and deformation information spanning the length scales of interest for …


Application Of Multi-Scale Computational Techniques To Complex Materials Systems, Mujan N. Seif Jan 2023

Application Of Multi-Scale Computational Techniques To Complex Materials Systems, Mujan N. Seif

Theses and Dissertations--Chemical and Materials Engineering

The applications of computational materials science are ever-increasing, connecting fields far beyond traditional subfields in materials science. This dissertation demonstrates the broad scope of multi-scale computational techniques by investigating multiple unrelated complex material systems, namely scandate thermionic cathodes and the metallic foam component of micrometeoroid and orbital debris (MMOD) shielding. Sc-containing "scandate" cathodes have been widely reported to exhibit superior properties compared to previous thermionic cathodes; however, knowledge of their precise operating mechanism remains elusive. Here, quantum mechanical calculations were utilized to map the phase space of stable, highly-faceted and chemically-complex W nanoparticles, accounting for both finite temperature and chemical …