Open Access. Powered by Scholars. Published by Universities.®

Mechanics of Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology

Porosity

Publication Year

Articles 1 - 4 of 4

Full-Text Articles in Mechanics of Materials

Heterogeneous Sensor Data Fusion For Multiscale, Shape Agnostic Flaw Detection In Laser Powder Bed Fusion Additive Manufacturing, Benjamin Bevans, Christopher Barrett, Thomas Spears, Aniruddha Gaikwad, Alex Riensche, Harold (Scott) Halliday, Prahalada Rao Mar 2023

Heterogeneous Sensor Data Fusion For Multiscale, Shape Agnostic Flaw Detection In Laser Powder Bed Fusion Additive Manufacturing, Benjamin Bevans, Christopher Barrett, Thomas Spears, Aniruddha Gaikwad, Alex Riensche, Harold (Scott) Halliday, Prahalada Rao

Department of Mechanical and Materials Engineering: Faculty Publications

We developed and applied a novel approach for shape agnostic detection of multiscale flaws in laser powder bed fusion (LPBF) additive manufacturing using heterogenous in-situ sensor data. Flaws in LPBF range from porosity at the micro-scale (< 100 μm), layer related inconsistencies at the meso-scale (100 μm to 1 mm) and geometry-related flaws at the macroscale (> 1 mm). Existing data-driven models are primarily focused on detecting a specific type of LPBF flaw using signals from one type of sensor. Such approaches, which are trained on data from simple cuboid and cylindrical-shaped coupons, have met limited success when used for detecting multiscale flaws in complex LPBF parts. The objective of this work is to develop a heterogenous sensor data fusion …


Closed-Loop Control Of Meltpool Temperature In Directed Energy Deposition, Ziyad M. Smoqi, Ben Bevans, Aniruddha Gaikwad, James Craig, Alan Abul-Haj, Brent Roeder, Bill Macy, Jeffrey E. Shield, Prahalada K. Rao Mar 2022

Closed-Loop Control Of Meltpool Temperature In Directed Energy Deposition, Ziyad M. Smoqi, Ben Bevans, Aniruddha Gaikwad, James Craig, Alan Abul-Haj, Brent Roeder, Bill Macy, Jeffrey E. Shield, Prahalada K. Rao

Department of Mechanical and Materials Engineering: Faculty Publications

The objective of this work is to mitigate flaw formation in powder and laser-based directed energy deposition (DED) additive manufacturing process through close-loop control of the meltpool temperature. In this work, the meltpool temperature was controlled by modulating the laser power based on feedback signals from a coaxial two-wavelength imaging pyrometer. The utility of closed-loop control in DED is demonstrated in the context of practically inspired trapezoid-shaped stainlesssteel parts (SS 316L). We demonstrate that parts built under closed-loop control have reduced variation in porosity and uniform microstructure compared to parts built under open-loop conditions. For example, post-process characterization showed that …


Part-Scale Thermal Simulation Of Laser Powder Bed Fusion Using Graph Theory: Effect Of Thermal History On Porosity, Microstructure Evolution, And Recoater Crash, Reza Yavari, Ziyad Smoqi, Alex Riensche, Ben Bevans, Humaun Kobir, Heimdall Mendoza, Hyeyun Song, Kevin Cole, Prahalada Rao Mar 2021

Part-Scale Thermal Simulation Of Laser Powder Bed Fusion Using Graph Theory: Effect Of Thermal History On Porosity, Microstructure Evolution, And Recoater Crash, Reza Yavari, Ziyad Smoqi, Alex Riensche, Ben Bevans, Humaun Kobir, Heimdall Mendoza, Hyeyun Song, Kevin Cole, Prahalada Rao

Department of Mechanical and Materials Engineering: Faculty Publications

Flaw formation in laser powder bed fusion (LPBF) is influenced by the spatiotemporal temperature distribution – thermal history – of the part during the process. Therefore, to prevent flaw formation there is a need for fast and accurate models that can predict the thermal history as a function of the part shape and processing parameters. In previous work, a thermal modeling approach based on graph theory was used to predict the thermal history in LPBF parts in less-than 20% of the time required by finite element-based models with error within 10% of experimental measurements. The present work transitions toward the …


Scaffold Structural Microenvironmental Cues To Guide Tissue Regeneration In Bone Tissue Applications, Xuening Chen, Hongyuan Fan, Xiaowei Deng, Lina Wu, Tao Yi, Linxia Gu, Changchun Zhou, Yujiang Fan, Xingdong Zhang Jan 2018

Scaffold Structural Microenvironmental Cues To Guide Tissue Regeneration In Bone Tissue Applications, Xuening Chen, Hongyuan Fan, Xiaowei Deng, Lina Wu, Tao Yi, Linxia Gu, Changchun Zhou, Yujiang Fan, Xingdong Zhang

Department of Mechanical and Materials Engineering: Faculty Publications

In the process of bone regeneration, new bone formation is largely affected by physico-chemical cues in the surrounding microenvironment. Tissue cells reside in a complex scaffold physiological microenvironment. The scaffold should provide certain circumstance full of structural cues to enhance multipotent mesenchymal stem cell (MSC) differentiation, osteoblast growth, extracellular matrix (ECM) deposition, and subsequent new bone formation. This article reviewed advances in fabrication technology that enable the creation of biomaterials with well-defined pore structure and surface topography, which can be sensed by host tissue cells (esp., stem cells) and subsequently determine cell fates during differentiation. Three important cues, including scaffold …