Open Access. Powered by Scholars. Published by Universities.®

Mechanics of Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Mechanics of Materials

Nanoscale Frictional Properties Of Nickel With One-Dimensional And Two-Dimensional Materials, Timothy K. Schlenger May 2016

Nanoscale Frictional Properties Of Nickel With One-Dimensional And Two-Dimensional Materials, Timothy K. Schlenger

Mechanical Engineering Undergraduate Honors Theses

When looking at the nanoscale, material interface interactions have been observed to exhibit particularly interesting properties. Our research looks into various combinations of carbyne and graphene atop a nickel block to look into the interface friction properties between them. Both the carbyne and graphene are tested using steered molecular dynamics (SMD) in sheering and peeling directions along the surface of the nickel block. These tests are then analyzed by comparing the magnitude of the acting force versus the displacement of the carbon allotrope sample across the nickel block. It is found that as the width of a carbon allotrope sample …


Traction-Separation Relationships For Hydrogen-Induced Grain Boundary Embrittlement In Nickel Via Molecular Dynamics Simulations, Wesley Allen Barrows Jul 2015

Traction-Separation Relationships For Hydrogen-Induced Grain Boundary Embrittlement In Nickel Via Molecular Dynamics Simulations, Wesley Allen Barrows

Graduate Theses and Dissertations

The deleterious effects of atomic and molecular hydrogen on the mechanical properties of metals have long been observed. Although several theories exist describing the mechanisms by which hydrogen negatively influences the failure of materials, a consensus has yet to be reached regarding the exact mechanism or combination of mechanisms. Two mechanisms have gained support in explaining hydrogen’s degradative role in non-hydride forming metals: hydrogen-enhanced localized plasticity and hydrogen-enhanced decohesion. Yet, the interplay between these mechanisms and microstructure in metallic materials has not been explained. Accordingly, for this thesis, the three main objectives are: (i) to develop a numerical methodology to …