Open Access. Powered by Scholars. Published by Universities.®

Mechanics of Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Mechanics of Materials

Thermal Stresses In End-Heated Layered Media, Jerry R. Couick Dec 1995

Thermal Stresses In End-Heated Layered Media, Jerry R. Couick

Theses and Dissertations

Thermal stresses in semi-infinite layered beams heated on the end are calculated using an extension to simple bimetallic thermostat theory. Recently, researchers have used the concept of interfacial compliance to determine interlaminar stresses in a simple thermostat of finite length subjected to a uniform temperature increase. In the present work, the thermostat theory is extended to apply to the beams of interest. A closed-form solution to the problem is obtained. It is not applicable within about one beam thickness (St Venant boundary region) of the end. Various classes of layered materials are analyzed to determine if significant stresses exist outside …


Development Of Nial-Based Intermetallic Alloys: Effect Of Chromium Addition, R. Tiwari, Surendra N. Tewari, R. Asthana, A. Garg Feb 1995

Development Of Nial-Based Intermetallic Alloys: Effect Of Chromium Addition, R. Tiwari, Surendra N. Tewari, R. Asthana, A. Garg

Chemical & Biomedical Engineering Faculty Publications

The mechanical behavior of dual-phase NiAl(Cr) microstructures, consisting of elongated primary NiAl grains aligned with an intergranular NiAl-Cr eutectic phase, produced by extrusion of a cast NiAl(Cr) alloy, has been examined. Chromium addition to create a dual phase NiAl-based aligned microstructure leads to large increases in the yield strength but no significant toughness improvement. This is achieved primarily by solid solution hardening and precipitation hardening. The constitutional hardening rate resulting from deviations from stoichiometry in the nickel-rich NiAl was estimated to be about 66 MPa per atomic per cent of nickel.


Nonlinear Finite Element Micromechanic Analysis Of Thermoplastic Composite Of Recycled High Density Polyethylene Reinforced With Short Glass Fibers, Qiming Lou Jan 1995

Nonlinear Finite Element Micromechanic Analysis Of Thermoplastic Composite Of Recycled High Density Polyethylene Reinforced With Short Glass Fibers, Qiming Lou

Masters Theses

This thesis studied the nonlinear micromechanic behavior of thermoplastic composite of recycled high density polyethylene (HDPE) reinforced with short glass fibers using finite element method. The composite material was modeled using a micromechanic unit cell to simulate the stress distribution between the plastic matrix and the fiber in the composite. Nonlinear behavior of recycled HDPE and imperfect bonding between the fiber and matrix were investigated. Load-bearing capability of the fiber was evaluated using stress partition ratio (SPR) in the composite models. The effect of fiber aspect ratio on the stress distribution of the composite was studied to optimize the material …