Open Access. Powered by Scholars. Published by Universities.®

Engineering Mechanics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Engineering Mechanics

Impact Of Silicon Ion Irradiation On Aluminum Nitride-Transduced Microelectromechanical Resonators, David D. Lynes, Joshua Young, Eric Lang, Hengky Chandrahalim Nov 2023

Impact Of Silicon Ion Irradiation On Aluminum Nitride-Transduced Microelectromechanical Resonators, David D. Lynes, Joshua Young, Eric Lang, Hengky Chandrahalim

Faculty Publications

Microelectromechanical systems (MEMS) resonators use is widespread, from electronic filters and oscillators to physical sensors such as accelerometers and gyroscopes. These devices' ubiquity, small size, and low power consumption make them ideal for use in systems such as CubeSats, micro aerial vehicles, autonomous underwater vehicles, and micro-robots operating in radiation environments. Radiation's interaction with materials manifests as atomic displacement and ionization, resulting in mechanical and electronic property changes, photocurrents, and charge buildup. This study examines silicon (Si) ion irradiation's interaction with piezoelectrically transduced MEMS resonators. Furthermore, the effect of adding a dielectric silicon oxide (SiO2) thin film is …


Electrospinning Processing Techniques For The Manufacturing Of Composite Dielectric Elastomer Fibers, Rani Elhajjar Oct 2021

Electrospinning Processing Techniques For The Manufacturing Of Composite Dielectric Elastomer Fibers, Rani Elhajjar

Civil and Environmental Engineering Faculty Articles

Dielectric elastomers (DE) are novel composite architectures capable of large actuation strains and the ability to be formed into a variety of actuator configurations. However, the high voltage requirement of DE actuators limits their applications for a variety of applications. Fiber actuators composed of DE fibers are particularly attractive as they can be formed into artificial muscle architectures. The interest in manufacturing micro or nanoscale DE fibers is increasing due to the possible applications in tissue engineering, filtration, drug delivery, catalysis, protective textiles, and sensors. Drawing, self-assembly, template-direct synthesis, and electrospinning processing have been explored to manufacture these fibers. Electrospinning …


The Effects Of The Transient And Performance Loss Rates On Pv Output Performance, Chibuisi Chinasaokwu Okorieimoh, Brian Norton, Michael Conlon Jun 2021

The Effects Of The Transient And Performance Loss Rates On Pv Output Performance, Chibuisi Chinasaokwu Okorieimoh, Brian Norton, Michael Conlon

Conference papers

Solar photovoltaic (PV) panels experience long-term performance degradation as compared to their initial performance, resulting in lower like-per-like efficiencies and performance ratios. Manufacturers of solar photovoltaic modules normally guarantee a lifespan of more than 20 years. To meet such commitments, it is important to monitor and mitigate PV module degradation during this period, as well as beyond, to recognize maintenance and repair needs. Solar PV modules degrade over time, becoming less effective, less reliable, and eventually unusable. The effects of transient and performance loss rates on the output performance of polycrystalline silicon (p-Si) solar PV modules are the focus of …


Open-Source Digitally Replicable Lab-Grade Scales, Benjamin R. Hubbard, Joshua M. Pearce Jun 2020

Open-Source Digitally Replicable Lab-Grade Scales, Benjamin R. Hubbard, Joshua M. Pearce

Michigan Tech Publications

This study provides designs for a low-cost, easily replicable open-source lab-grade digital scale that can be used as a precision balance. The design is such that it can be manufactured for use in most labs throughout the world with open-source RepRap-class material extrusion-based 3-D printers for the mechanical components and readily available open-source electronics including the Arduino Nano. Several versions of the design were fabricated and tested for precision and accuracy for a range of load cells. The results showed the open-source scale was found to be repeatable within 0.05 g with multiple load cells, with even better precision (0.005 …


Multidimensional Optimal Droop Control For Dc Microgrids In Military Applications, Kaitlyn J. Bunker, Michael D. Cook, Wayne Weaver, Gordon Parker Oct 2018

Multidimensional Optimal Droop Control For Dc Microgrids In Military Applications, Kaitlyn J. Bunker, Michael D. Cook, Wayne Weaver, Gordon Parker

Michigan Tech Publications

Reliability is a key consideration when microgrid technology is implemented in military applications. Droop control provides a simple option without requiring communication between microgrid components, increasing the control system reliability. However, traditional droop control does not allow the microgrid to utilize much of the power available from a solar resource. This paper applies an optimal multidimensional droop control strategy for a solar resource connected in a microgrid at a military patrol base. Simulation and hardware-in-the-loop experiments of a sample microgrid show that much more power from the solar resource can be utilized, while maintaining the system’s bus voltage around a …


Properties Of Matter, Mike Jackson, Holly Haney Jul 2018

Properties Of Matter, Mike Jackson, Holly Haney

High School Lesson Plans

Students will investigate the relationship(s) between thermal and electrical properties of matter. First, students will use a multimeter and temperature probe to investigate the relationship between electrical resistance and temperature of an electrical resistor composed of metals. They will then graph collected data to analyze the relationship and draw a conclusion as to their relationship. They will then perform the same investigation on a thermal resistor made of a semiconducting substance and analyze that collected data. Finally, using ClaimEvidence-Reasoning (CER) structure, students will use their experimental evidence to state the similarities and differences between the electro-thermal properties of metals and …


Investigation Of Electrical Defects Arising From Excessive Sidewall Force And Excessive Tensile Strain On Power Cables, Darren Mcconnon, Joseph Kearney, Tom Looby, James O'Shaughnessy Jan 2017

Investigation Of Electrical Defects Arising From Excessive Sidewall Force And Excessive Tensile Strain On Power Cables, Darren Mcconnon, Joseph Kearney, Tom Looby, James O'Shaughnessy

Conference papers

The study includes a comprehensive review of the existing literature and guidelines regarding the effects of sidewall force and tensile strain on power cables during installation. The most appropriate diagnostic test methods required to analyse these effects are also assessed. The results of tests and analysis of the existing literature are then combined in an attempt to determine a realistic basis for guidelines and recommendations relevant to cable installation forces.