Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Engineering Science and Materials

Application Of Computational Tools To Spaghetti-Based Truss Bridge Design, Jin Xu, Jiliang Li, Nuri Zeytinoglu, Jinyuan Zhai Mar 2019

Application Of Computational Tools To Spaghetti-Based Truss Bridge Design, Jin Xu, Jiliang Li, Nuri Zeytinoglu, Jinyuan Zhai

ASEE IL-IN Section Conference

Application of Computational Tools to Spaghetti-Based Truss Design

Statics and Strength of Materials are two foundational courses for Mechanical/Civil Engineering. In order to assist students in better understanding and applying concepts to a meaningful design task, SolidWorks and theoretical calculation were used for a spaghetti-bridge design contest with the constraints of given maximum weight and allowable support-material weight. As the first step of this iterative designing process, both extrude feature and structural member were introduced to model planar bridge trusses. Then SolidWorks’ Statics module was used to run FEA analysis of the structural performance in efforts to optimize the ...


Mechanical Characterization And Shear Test Comparison For Continuous-Fiber Polymer Composites, Matthew Crossan Apr 2018

Mechanical Characterization And Shear Test Comparison For Continuous-Fiber Polymer Composites, Matthew Crossan

Electronic Thesis and Dissertation Repository

As fiber-reinforced composites continue to be used in a wide-range of high performance structures, more detailed understanding and accurate prediction of stress-strain behaviour is necessary to improving designs and reducing costs. This thesis compares the experimental behaviour of a continuous fiber polymer composite of carbon fiber and epoxy resin using Digital Image Correlation to analytical and theoretical predictions. Furthermore, an in-depth analysis of shear testing methods reveals the advantages and limitations of different testing standards. Finally, the limitations of the Iosipescu Shear test (ASTM 5379) fixture to break high-strain-to-failure composites in comparison to the V-notched Rail Shear Fixture (ASTM 7078 ...


A Comparison Study Of Composite Laminated Plates With Holes Under Tension, Joun S. Kim Dec 2017

A Comparison Study Of Composite Laminated Plates With Holes Under Tension, Joun S. Kim

Master's Theses and Project Reports

A Comparison Study of Composite Laminated Plates with Holes under Tension

A study was conducted to quantify the accuracy of numerical approximations to deem sufficiency in validating structural composite design, thus minimizing, or even eliminating the need for experimental test. Error values for stress and strain were compared between Finite Element Analysis (FEA) and analytical (Classical Laminated Plate Theory), and FEA and experimental tensile test for two composite plate designs under tension: a cross-ply composite plate design of [(0/90)4]s, and a quasi-isotropic layup design of [02/+45/-45/902]s, each with a single, centered hole of ...


Finite Strain Micromorphic Elasticity, Elastoplasticity, And Dynamics For Multiscale Finite Element Analysis, Farhad Shahabi Jan 2017

Finite Strain Micromorphic Elasticity, Elastoplasticity, And Dynamics For Multiscale Finite Element Analysis, Farhad Shahabi

Civil Engineering Graduate Theses & Dissertations

This study stands as an attempt to consider the micro-structure of materials in a continuum framework by the aid of micromorphic continuum theory in the sense of Eringen. Since classical continuum mechanics do not account for the micro-structural characteristics of materials, they cannot be used to address the macroscopic mechanical response of all micro-structured materials. In the “representative volume element (RVE)” based methods, classical continuum mechanics may be applied to analyze mechanical deformation and stresses of materials at the relevant micro-structural length-scale (such as grains of a polycrystalline metal, or sand, or metal matrix composite, etc), but when applying standard ...


Frontal Crash Analysis Of A Conformable Cng Tank Using Finite Element Analysis, Datta Sandesh Manjunath Jan 2017

Frontal Crash Analysis Of A Conformable Cng Tank Using Finite Element Analysis, Datta Sandesh Manjunath

Dissertations, Master's Theses and Master's Reports

The purpose of this study is to computationally model and analyze a Conformable Compressed Natural Gas (CNG) fuel tank for frontal crashes using Finite Element Analysis. Researchers have developed a CNG fuel tank, which is conformable, non-conventional and non-cylindrical. This tank increases cost efficiency, volumetric efficiency and cargo efficiency in CNG vehicle applications. A lightweight pickup truck (2015 Chevrolet Silverado) has been used to integrate the CNG tanks and field-testing has been conducted to demonstrate the application.

The report mainly focuses on the effective finite element modeling of the chassis, brackets and tanks using HYPERMESH and RADIOSS. The frontal crash ...


Finite Element Analysis (Fea) Study Of The Thermal Stress Concentrations In Planar-Type Sodium Sulfur (Nas) Secondary Batteries, Jeffrey P. Colker Dec 2015

Finite Element Analysis (Fea) Study Of The Thermal Stress Concentrations In Planar-Type Sodium Sulfur (Nas) Secondary Batteries, Jeffrey P. Colker

Theses and Dissertations

The importance of a reliable and safe way to store energy, and allow for on-demand usage, has led to much research in the field of secondary battery development. The thesis herein explores a technology that has shown promising results when implemented in large-scale energy grid applications. Though the technology has proven viable in both load-leveling on existing grids as well as serving to legitimize renewable energy sources, the development of such advanced battery systems is not without challenge. Sodium-sulfur (NaS) secondary cells have shown promising results when implemented in the aforementioned energy storage applications. One of the main drawbacks to ...


Finite Element Modeling Of Ballistic Impact On A Glass Fiber Composite Armor, Dan M. Davis Jun 2012

Finite Element Modeling Of Ballistic Impact On A Glass Fiber Composite Armor, Dan M. Davis

Master's Theses and Project Reports

Finite Element Modeling of Ballistic Impact on a Glass Fiber Composite Armor

Dan Davis

Experiments measuring the ballistic performance of a commercially available fiberglass armor plate were used to guide the development of constitutive laws for a finite element model of the impact. The test samples are commercially available armor panels, made from E-glass fiber reinforced polyester rated to NIJ level III. Quasi-static tensile tests were used to establish material properties of the test panels. These properties were then used to create models in the explicit finite element code LSDYNA.

Ballistic impact testing of the panels was conducted using a ...


Finite Element Analysis Of The Contact Deformation Of Piezoelectric Materials, Ming Liu Jan 2012

Finite Element Analysis Of The Contact Deformation Of Piezoelectric Materials, Ming Liu

Theses and Dissertations--Chemical and Materials Engineering

Piezoelectric materials in the forms of both bulk and thin-film have been widely used as actuators and sensors due to their electromechanical coupling. The characterization of piezoelectric materials plays an important role in determining device performance and reliability. Instrumented indentation is a promising method for probing mechanical as well as electrical properties of piezoelectric materials.

The use of instrumented indentation to characterize the properties of piezoelectric materials requires analytical relations. Finite element methods are used to analyze the indentation of piezoelectric materials under different mechanical and electrical boundary conditions.

For indentation of a piezoelectric half space, a three-dimensional finite element ...


Design, Fabrication, Structural Testing, And Numerical Analysis Of A Small Scale Composite Wing, Jacob David Gaunt, Juan Carlos Flores, Vincent Andrew Perry Jun 2010

Design, Fabrication, Structural Testing, And Numerical Analysis Of A Small Scale Composite Wing, Jacob David Gaunt, Juan Carlos Flores, Vincent Andrew Perry

Aerospace Engineering

A small scale composite wing based on a design found on an experimental aircraft was designed, constructed, and tested dynamically and statically. The wing was constructed similarly to an experimental aircraft wing. The performed static test was intended to produce pure bending. Strain gages were used to measure strains on the wing structure. The strains were converted to stresses to aid in analysis. The static test results suggested that the wing was actually under torsion. Four structural modes were found from the static test. A finite element analysis model was made to compare experimental results to numerical analytical results. The ...


Friction Stir Welding Process And Material Microstructure Evolution Modeling In 2000 And 5000 Series Of Aluminum Alloys, Harshavardhan Yalavarthy Dec 2009

Friction Stir Welding Process And Material Microstructure Evolution Modeling In 2000 And 5000 Series Of Aluminum Alloys, Harshavardhan Yalavarthy

All Theses

Interactions between the rotating and advancing pin-shaped tool (terminated at one end with a circular-cylindrical shoulder) with the clamped welding-plates and the associated material and heat transport during a Friction Stir Welding (FSW) process are studied computationally using a fully-coupled thermo-mechanical finite-element analysis. To surmount potential numerical problems associated with extensive mesh distortions/entanglement, an Arbitrary Lagrangian Eulerian (ALE) formulation was used which enabled adaptive re-meshing (to ensure the continuing presence of a high-quality mesh) while allowing full tracking of the material free surfaces. To demonstrate the utility of the present computational approach, the analysis is applied to the cases ...


Use Of Orthogonal Arrays For Efficient Evaluation Of Geometric Designs For Reducing Vibration Of A Non-Pneumatic Wheel During High-Speed Rolling, William Rutherford Aug 2009

Use Of Orthogonal Arrays For Efficient Evaluation Of Geometric Designs For Reducing Vibration Of A Non-Pneumatic Wheel During High-Speed Rolling, William Rutherford

All Theses

During high speed rolling of a non-pneumatic wheel, vibration may be produced by the interaction of collapsible spokes with a shear deformable ring as they enter the contact region, buckle and then snap back into a state of tension. In the present work, a 2D planar finite element model with geometric nonlinearity and explicit time-stepping is used to simulate rolling of the non-pneumatic wheel. Vibration characteristics are measured from the FFT frequency spectrum of the time-signals of perpendicular distance of marker nodes from the virtual plane of the spoke, thickness change in the ring between spokes, and ground reaction forces ...