Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering Science and Materials

Effect Of Ultrasonic Treatment On The Microstructure And Mechanical Properties Of Al6061 And Composite, Ana S. Exime Nov 2017

Effect Of Ultrasonic Treatment On The Microstructure And Mechanical Properties Of Al6061 And Composite, Ana S. Exime

FIU Electronic Theses and Dissertations

In this study, the effect of ultrasonic treatment (UST) parameters such as amplitude, sonication time, and melt temperature on microstructure and microhardness of Al 6061 alloy is evaluated. The effect of UST on the dispersion of tungsten disulfide (WS2) and carbon nanotubes (CNT) as reinforcement particles in Al 6061 during casting is also studied. The cast Al 6061 with UST demonstrated 32% grain size reduction and 8% increase in the microhardness for optimum processing conditions. The cavitation process induced by UST is responsible for the refinement in microstructure and increase of hardness by enhancing the degassing and nucleation …


Multiple Scattering Theory For Polycrystalline Materials With Strong Grain Anisotropy: Theoretical Fundamentals And Applications, Huijing He Oct 2017

Multiple Scattering Theory For Polycrystalline Materials With Strong Grain Anisotropy: Theoretical Fundamentals And Applications, Huijing He

Department of Mechanical and Materials Engineering: Faculty Publications

This work is a natural extension of the author’s previous work: “Multiple scattering theory for heterogeneous elastic continua with strong property fluctuation: theoretical fundamentals and applications” (arXiv:1706.09137 [physics.geo-ph]), which established the foundation for developing multiple scattering model for heterogeneous elastic continua with either weak or strong fluctuations in mass density and elastic stiffness. Polycrystalline material is another type of heterogeneous materials that widely exists in nature and extensively used in industry. In this work, the corresponding multiple scattering theory for polycrystalline materials with randomly oriented anisotropic crystallites is developed. To validate the theory, the theoretical results for a series of …


Dispersive Waves In Microstructured Solids, A. Berezovski, J. Engelbrecht, A. Salupere, K. Tamm, T. Peets, Mihhail Berezovski Jun 2013

Dispersive Waves In Microstructured Solids, A. Berezovski, J. Engelbrecht, A. Salupere, K. Tamm, T. Peets, Mihhail Berezovski

Publications

The wave motion in micromorphic microstructured solids is studied. The mathematical model is based on ideas of Mindlin and governing equations are derived by making use of the Euler–Lagrange formalism. The same result is obtained by means of the internal variables approach. Actually such a model describes internal fields in microstructured solids under external loading and the interaction of these fields results in various physical effects. The emphasis of the paper is on dispersion analysis and wave profiles generated by initial or boundary conditions in a one-dimensional case.


On The Stability Of A Microstructure Model, Mihhail Berezovski, Arkadi Berezovski Feb 2012

On The Stability Of A Microstructure Model, Mihhail Berezovski, Arkadi Berezovski

Publications

Abstract

The asymptotic stability of solutions of the Mindlin-type microstructure model for solids is analyzed in the paper. It is shown that short waves are asymptotically stable even in the case of a weakly non-convex free energy dependence on microdeformation.

Research highlights

The Mindlin-type microstructure model cannot describe properly short wave propagation in laminates. A modified Mindlin-type microstructure model with weakly non-convex free energy resolves this discrepancy. It is shown that the improved model with weakly non-convex free energy is asymptotically stable for short waves.


On The Stability Of A Microstructure Model, Mihhail Berezovski, Arkadi Berezovski Feb 2011

On The Stability Of A Microstructure Model, Mihhail Berezovski, Arkadi Berezovski

Publications

The asymptotic stability of solutions of the Mindlin-type microstructure model for solids is analyzed in the paper. It is shown that short waves are asymptotically stable even in the case of a weakly non-convex free energy dependence on microdeformation.