Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Engineering Science and Materials

Multi-Axial Failure Of High-Performance Fiber During Transverse Impact, Matthew C. Hudspeth Apr 2016

Multi-Axial Failure Of High-Performance Fiber During Transverse Impact, Matthew C. Hudspeth

Open Access Dissertations

The effect of projectile nose geometry on ensuing wave development in high-performance yarns is explored during single yarn transverse impact. Special attention has been placed on visualizing the immediate region around the projectile-yarn contact site for 0.30-cal round, 0.30-cal fragment simulation projectiles (FSP), and razor blades using high-speed imaging. Kevlar® KM2, Dyneema®SK76 and AuTx have been impacted at velocities ranging from ∼100 m/s to ∼1200 m/s depending on projectile nose shape, with an emphasis set on determining the critical velocity wherein below said velocity significant development of wave propagation occurs and above said velocity the ...


Analytical Investigation Of Fretting Wear With Special Emphasis On Stress Based Models, Arnab Jyoti Ghosh Mar 2016

Analytical Investigation Of Fretting Wear With Special Emphasis On Stress Based Models, Arnab Jyoti Ghosh

Open Access Dissertations

Fretting refers to the minute oscillatory motion between two surfaces in contact under an applied normal load. It can cause either surface or subsurface initiated failure resulting in either fatigue or wear or both. Two distinct regimes – partial slip and gross slip are typically observed in fretting contacts. Due to the nature of contact, various factors such as wear debris, oxidation, surface roughness, humidity etc. effect failures caused due to fretting. A number of different techniques have been developed to quantify fretting damage and several numerical models are proposed to predict damage due to fretting. Fretting wear also depends on ...


Investigation Of A Numerical Algorithm For A Discretized Rubber-Belt Continuously Variable Transmission Dynamic Model And Techniques For The Measurement Of Belt Material Properties., Brian Gene Ballew Dec 2015

Investigation Of A Numerical Algorithm For A Discretized Rubber-Belt Continuously Variable Transmission Dynamic Model And Techniques For The Measurement Of Belt Material Properties., Brian Gene Ballew

Theses and Dissertations

A numerical algorithm for modeling the dynamic response of a rubber-belt Continuously Variable Transmission (CVT) belt is recreated. The numerical attributes applied to the algorithm and difficulties with numerical stability are discussed in detail. The degrees of freedom of the system have been expanded to include the dynamics of the engine torque output and vehicle loads such as rolling resistance and aerodynamic drag. This was done to emphasize the use of the model as an analysis tool for simulating CVT/engine/vehicle response. The increased degrees of freedom require the addition of a linear dampening element between belt nodes to ...


Traction-Separation Relationships For Hydrogen-Induced Grain Boundary Embrittlement In Nickel Via Molecular Dynamics Simulations, Wesley Allen Barrows Jul 2015

Traction-Separation Relationships For Hydrogen-Induced Grain Boundary Embrittlement In Nickel Via Molecular Dynamics Simulations, Wesley Allen Barrows

Theses and Dissertations

The deleterious effects of atomic and molecular hydrogen on the mechanical properties of metals have long been observed. Although several theories exist describing the mechanisms by which hydrogen negatively influences the failure of materials, a consensus has yet to be reached regarding the exact mechanism or combination of mechanisms. Two mechanisms have gained support in explaining hydrogen’s degradative role in non-hydride forming metals: hydrogen-enhanced localized plasticity and hydrogen-enhanced decohesion. Yet, the interplay between these mechanisms and microstructure in metallic materials has not been explained. Accordingly, for this thesis, the three main objectives are: (i) to develop a numerical methodology ...


Detailed Finite Element Analysis And Preliminary Study Of The Effects Of Friction And Fastener Pre-Tension On The Mechanical Behavior Of Fastened Built-Up Members, Francisco Javier Bonachera Martin Apr 2014

Detailed Finite Element Analysis And Preliminary Study Of The Effects Of Friction And Fastener Pre-Tension On The Mechanical Behavior Of Fastened Built-Up Members, Francisco Javier Bonachera Martin

Open Access Theses

The characterization of fatigue resistance is one of the main concerns in structural engineering, a concern that is particularly important in the evaluation of existing bridge members designed or erected before the development of fatigue design provisions. The ability of a structural member to develop alternate load paths after the failure of a component is known as member-level or internal redundancy. In fastened built-up members, these alternate load paths are affected by the combination of fastener pre-tension and friction between the structural member components in contact. In this study, a finite element methodology to model and analyze riveted and bolted ...


Preparation Of Mesoporous Silica Supported Ruthenium Oxides And The Application And Kinetic Study In The Catalysis Of Water Oxidation, Yang Zhang Oct 2013

Preparation Of Mesoporous Silica Supported Ruthenium Oxides And The Application And Kinetic Study In The Catalysis Of Water Oxidation, Yang Zhang

Open Access Dissertations

Photo-induced water splitting of water into H2 and O2 has been a major focus in the development of clean and renewable energy. The development of viable and efficient catalysts that facilitates O2 production remains the major challenge in the study of the corresponding half-reaction of water oxidation. There are plenty of metal oxides reported active in the catalysis of water oxidation. However, several important performance bench marks of those materials, such as the non-stoichiometric production of O2, slow reaction rate and/or low quantum efficiency, remain to be improved.

Ruthenium oxide (RuO2) has long been known as one of the ...


Creep, Fatigue And Creep-Fatigue Interactions In Modified 9% Cr - 1% Mo (P91) Steels, Valliappa Kalyanasundaram May 2013

Creep, Fatigue And Creep-Fatigue Interactions In Modified 9% Cr - 1% Mo (P91) Steels, Valliappa Kalyanasundaram

Theses and Dissertations

Grade P91 steel, from the class of advanced high-chrome ferritic steels, is one of the preferred materials for many elevated temperature structural components. Creep-fatigue (C-F) interactions, along with oxidation, can accelerate the kinetics of damage accumulation and consequently reduce such components' life. Hence, reliable C-F test data is required for meticulous consideration of C-F interactions and oxidation, which in turn is vital for sound design practices. It is also imperative to develop analytical constitutive models that can simulate and predict material response under various long-term in-service conditions using experimental data from short-term laboratory experiments. Consequently, the major objectives of the ...


Orientation Controllable Epitaxial Vapor-Liquid-Solid Semiconductor Nanowire Synthesis On Silicon Substrate, Sung Hwan Chung Jan 2013

Orientation Controllable Epitaxial Vapor-Liquid-Solid Semiconductor Nanowire Synthesis On Silicon Substrate, Sung Hwan Chung

Open Access Dissertations

Semiconductor nanowires synthesized via the vapor-liquid-solid (VLS) mechanism have attracted extensive research interest in recent years owing to their unique structure as a promising candidate for the future electronic devices. Germanium and silicon nanowires, in particular, are compatible with the current silicon-based technology via direct assembly. However, one of the main challenges for the successful nanowire application in large-scale is the lack of the method for obtaining nanowires in desired positions and directions. Therefore, the comprehensive, systematic understanding of epitaxial nanowire growth and the more suitable method to align nanowires on novel structure are required. In this work, the synthesis ...


Analysis Of An Actuated Two Segment Leg Model Of Locomotion, Nikhil Vinayak Rao Jan 2013

Analysis Of An Actuated Two Segment Leg Model Of Locomotion, Nikhil Vinayak Rao

Open Access Theses

Research studies on dynamic models of legged locomotion have generally focused on telescoping-type leg models. Such telescoping spring loaded inverted pendulum (SLIP) models have been able to accurately predict observed center of mass (CoM) trajectories. There have been comparatively fewer studies on dynamics of locomotion

with segmented legs. Some earlier studies on the dynamics due to leg segmentation appear straightforward. For example, a simple model with the only joint moment being due to a passive springy knee has been shown to behave similarly to a telescoping spring-mass model. However, in real-life animal locomotion, there are multiple joint-moments acting at the ...


Dynamical Properties Of Ferroelectric Perovskites (Ba,Sr)Tio3 And Pb(Zr,Ti)O3 Systems From First Principles, Jeevaka Weerasinghe Aug 2012

Dynamical Properties Of Ferroelectric Perovskites (Ba,Sr)Tio3 And Pb(Zr,Ti)O3 Systems From First Principles, Jeevaka Weerasinghe

Theses and Dissertations

A first-principles-based effective Hamiltonian scheme which incorporates coupling between ferroelectric (FE) and antiferrodistortive (AFD) motions is applied to Pb(Zr,Ti)O3 alloys. It validates the existence of two modes of E symmetry (rather than the single E(1TO) soft mode) in the 50-75 cm-1 range for temperatures smaller than 200 K and for compositions falling within the Rhombohedral R3c phase. Coupling between long-range-ordered FE and AFD motions is shown to be the cause of the additional mode and more insight into its nature is provided. This scheme is further used to reveal a field-induced anticrossing involving FE ...


Molecular Dynamics Study Of Diffusion Of O2 Penetrates In Uncrosslinked Polydimethysiloxane (Pdms), Crosslinked Pdms, And Pdms-Based Nanocomposites, Varun Ullal May 2012

Molecular Dynamics Study Of Diffusion Of O2 Penetrates In Uncrosslinked Polydimethysiloxane (Pdms), Crosslinked Pdms, And Pdms-Based Nanocomposites, Varun Ullal

Theses and Dissertations

Molecular dynamics simulations are used to study diffusion of O2 molecules in pure polydimethysiloxane (PDMS), crosslinked PDMS, and PDMS-based nanocomposites. The PDMS chains and penetrates are modeled using a hybrid interatomic potential which treats the Si-O atoms along the chain backbone explicitly while coarse-graining the methyl side groups and penetrates. By tracking the diffusion of penetrates in the system and subsequently computing their mean-squared displacement, diffusion coefficients are obtained. In pure PDMS models of varying molecular weight, diffusivity of the O22 penetrates is found to have an inverse relationship with chain length. Simulation models with longer chains ...


Development Of A Structured Concrete Thermocline Thermal Energy Storage System, Bradley M. Brown Dec 2011

Development Of A Structured Concrete Thermocline Thermal Energy Storage System, Bradley M. Brown

Theses and Dissertations

The past couple of decades have shown a concern when considering the way the world obtains its power. The focus has been switching from fossil fuels that have been used for hundreds of years to renewable energy sources, such as the sun. Solar energy is readily and infinitely available for harnessing. One problem with solar energy, though, is its inability to be used during the night time and during cloud covered weather. A solution to this problem is the use of energy storage mechanisms. For solar plants that use solar thermal energy (concentrating solar power plants), thermal energy storage (TES ...


Droplet Assisted Self-Assembly Of Semiconductor Nanostructures, Kimberly Annosha Sablon May 2009

Droplet Assisted Self-Assembly Of Semiconductor Nanostructures, Kimberly Annosha Sablon

Theses and Dissertations

There is increasing interest in quantum dot (QD) structures for a plethora of applications, including optoelectronic devices, quantum computing and energy harvesting. While strain driven surface diffusion via stranski-krastanow (SK) method has been commonly used to fabricate these structures, a more recent technique, droplet epitaxy (DE) does not require mismatch strain and is therefore much more flexible in the combination of materials utilized for the formation of QDs.

As reported in this work, a hybrid approach that combines DE and SK techniques for realizing lateral ordering of QDs was explored. First, the droplet formation of various materials was discussed and ...