Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

2015

Nanoscience and Nanotechnology

Institution
Keyword
Publication
Publication Type

Articles 1 - 30 of 38

Full-Text Articles in Engineering Science and Materials

Turning An Organic Semiconductor Into A Low-Resistance Material By Ion Implantation, Beatrice Fraboni, Alessandra Scidà, Piero Cosseddu, Yongqiang Wang, Michael Nastasi, Silvia Milita, Annalisa Bonfiglio Dec 2015

Turning An Organic Semiconductor Into A Low-Resistance Material By Ion Implantation, Beatrice Fraboni, Alessandra Scidà, Piero Cosseddu, Yongqiang Wang, Michael Nastasi, Silvia Milita, Annalisa Bonfiglio

NCESR Publications and Research

We report on the effects of low energy ion implantation on thin films of pentacene, carried out to investigate the efficacy of this process in the fabrication of organic electronic devices. Two different ions, Ne and N, have been implanted and compared, to assess the effects of different reactivity within the hydrocarbon matrix. Strong modification of the electrical conductivity, stable in time, is observed following ion implantation. This effect is significantly larger for N implants (up to six orders of magnitude), which are shown to introduce stable charged species within the hydrocarbon matrix, not only damage as is the case ...


Failure Simulations At Multiple Length Scales In High Temperature Structural Alloys, Chao Pu Dec 2015

Failure Simulations At Multiple Length Scales In High Temperature Structural Alloys, Chao Pu

Doctoral Dissertations

A number of computational methodologies have been developed to investigate the deformation and damage mechanism of various structural materials at different length scale and under extreme loading conditions, and also to provide insights in the development of high-performance materials.

In microscopic material behavior and failure modes, polycrystalline metals of interest include heterogeneous deformation field due to crystalline anisotropy, inter/intra grain or phase and grain boundary interactions. Crystal plasticity model is utilized to simulate microstructure based polycrystalline materials, and micro-deformation information, such as lattice strain evolution, can be captured based on crystal plasticity finite element modeling (CPFEM) in ABAQUS. The ...


Effect Of Surface Omniphobicity On Drying By Forced Convection, Madani A. Khan, Jeffrey Alston, Andrew Guenthner Aug 2015

Effect Of Surface Omniphobicity On Drying By Forced Convection, Madani A. Khan, Jeffrey Alston, Andrew Guenthner

STAR (STEM Teacher and Researcher) Presentations

Low energy surfaces can strongly repel both oil and water. Recently these surfaces have been fabricated on various substrates including fabric, aluminum, stainless steel and many other materials. In this experiment we explore the use of low energy surface deposition on aluminum alloy, stainless steel and silicon substrates, to enhance the drying rate of liquids removed from the surface by forced convection. We control surface roughness by substrate abrasion and by the growth of Al2O3 nanograss to enhance liquid repellence by use of a hierarchical texture. Liquid repellence of the substrates is measured by contact angles of ...


An Estimate Of The Second-Order In-Plane Acceleration Sensitivity Of A Y-Cut Quartz Thickness-Shear Resonator, Huijing He, Jiashi Yang, John A. Kosinski Aug 2015

An Estimate Of The Second-Order In-Plane Acceleration Sensitivity Of A Y-Cut Quartz Thickness-Shear Resonator, Huijing He, Jiashi Yang, John A. Kosinski

Mechanical & Materials Engineering Faculty Publications

We perform a theoretical analysis of the second-order in-plane acceleration sensitivity of a Y-cut quartz thick-ness-shear mode resonator. The second-order nonlinear theory of elasticity for anisotropic crystals is used to determine the biasing fields in the resonator under in-plane acceleration. The acceleration-induced frequency shift is determined from a per-turbation analysis based on the plate equations for small-amplitude vibrations superposed on a finite bias. We show that, whereas the first-order acceleration-induced frequency shift is zero for a structurally symmetric resonator under in-plane ac-celeration, the second-order frequency shift is nonzero and is quadratic in the acceleration. As the fourth-order nonlinear elastic constants ...


Biodegradable Medical Device Having An Adjustable Degradation Rate And Methods Of Making The Same, Yuebin Guo, Michael Sealy, Meisam Salahshoor Pirsoltan Jul 2015

Biodegradable Medical Device Having An Adjustable Degradation Rate And Methods Of Making The Same, Yuebin Guo, Michael Sealy, Meisam Salahshoor Pirsoltan

Mechanical & Materials Engineering Faculty Publications

Disclosed herein are biodegradable medical devices comprising biodegradable material (e.g., magnesium-calcium alloys) having an adjustable rate of degradation that can be used in various applications, including, but not limited to, drug delivery applications, cardiovascular applications, and orthopedic applications to make biodegradable and biocompatible devices. Also disclosed herein are methods of making biodegradable medical devices comprising biodegradable materials by using, for instance, hybrid dry cutting/hydrostatic burnishing.


Traction-Separation Relationships For Hydrogen-Induced Grain Boundary Embrittlement In Nickel Via Molecular Dynamics Simulations, Wesley Allen Barrows Jul 2015

Traction-Separation Relationships For Hydrogen-Induced Grain Boundary Embrittlement In Nickel Via Molecular Dynamics Simulations, Wesley Allen Barrows

Theses and Dissertations

The deleterious effects of atomic and molecular hydrogen on the mechanical properties of metals have long been observed. Although several theories exist describing the mechanisms by which hydrogen negatively influences the failure of materials, a consensus has yet to be reached regarding the exact mechanism or combination of mechanisms. Two mechanisms have gained support in explaining hydrogen’s degradative role in non-hydride forming metals: hydrogen-enhanced localized plasticity and hydrogen-enhanced decohesion. Yet, the interplay between these mechanisms and microstructure in metallic materials has not been explained. Accordingly, for this thesis, the three main objectives are: (i) to develop a numerical methodology ...


Non-Wetting Surface-Driven High-Aspect-Ratio Crystalline Grain Growth For Efficient Hybrid Perovskite Solar Cells, Cheng Bi, Qi Wang, Yongbo Yuan, Zhengguo Xiao, Jinsong Huang Jun 2015

Non-Wetting Surface-Driven High-Aspect-Ratio Crystalline Grain Growth For Efficient Hybrid Perovskite Solar Cells, Cheng Bi, Qi Wang, Yongbo Yuan, Zhengguo Xiao, Jinsong Huang

Mechanical & Materials Engineering Faculty Publications

Large-aspect-ratio grains are needed in polycrystalline thin-film solar cells for reduced charge recombination at grain boundaries; however, the grain size in organolead trihalide perovskite (OTP) films is generally limited by the film thickness. Here we report the growth of OTP grains with high average aspect ratio of 2.3–7.9 on a wide range of non-wetting hole transport layers (HTLs), which increase nucleus spacing by suppressing heterogeneous nucleation and facilitate grain boundary migration in grain growth by imposing less drag force. The reduced grain boundary area and improved crystallinity dramatically reduce the charge recombination in OTP thin films to ...


Color And Texture Morphing With Colloids On Multilayered Surfaces.Pdf, Shumin Li Mar 2015

Color And Texture Morphing With Colloids On Multilayered Surfaces.Pdf, Shumin Li

Shumin Li

ABSTRACT: Dynamic morphing of marine species to match with environment
changes in color and texture is an advanced means for surviving, self-defense, and
reproduction. Here we use colloids that are placed inside a multilayered structure to
demonstrate color and texture morphing. The multilayer is composed of a thermal
insulating base layer, a light absorbing mid layer, and a liquid top layer. When external
light of moderate intensity (∼0.2 W cm−2) strikes the structure, colloids inside the
liquid layer will be assembled to locations with an optimal absorption. When this
system is exposed to continuous laser pulses, more than ...


Methods And Systems For Handling Or Delivering Materials For Natural Orifice Surgery, Carl Nelson, Jeff Midday, Dimitry Oleynikov, Alan Goyzueta Mar 2015

Methods And Systems For Handling Or Delivering Materials For Natural Orifice Surgery, Carl Nelson, Jeff Midday, Dimitry Oleynikov, Alan Goyzueta

Mechanical & Materials Engineering Faculty Publications

The embodiments disclosed herein relate to various medical systems, including systems that can be used in conjunction with medical devices used in endoscopic surgery. Certain embodiments include various material handling devices that can transport materials between the inside and the outside of an endoscopic surgery patient.


Highly-Selective Chemiresistive Sensing And Analysis Of Vapors Using Functionalized Nanotubes, Deon Hines Feb 2015

Highly-Selective Chemiresistive Sensing And Analysis Of Vapors Using Functionalized Nanotubes, Deon Hines

All Dissertations, Theses, and Capstone Projects

Specifically, the project involves the development of a diversified array of nanostructured gas-sensors comprised of selectively, novel surface-functionalized carbon nanotubes (for analyte selectivity by virtue of functionality). Harnessing carbon nanotubes with various electron withdrawing and donating groups help in determining their affinity toward certain prognostic gaseous markers thus increasing specificity of such created sensors. We have devised synthetic routes that have led to the facile production of covalently polyfunctionalized nanotubes in high yield. Seven carbon nanotube analogues were systematically considered and then chemically synthesized, from pristine single-walled nanotubes (SWNT's), for use as the main component of sensory units that ...


Improving The Signal-To-Noise Of Nanopore Sensors, Matthew Puster Jan 2015

Improving The Signal-To-Noise Of Nanopore Sensors, Matthew Puster

Publicly Accessible Penn Dissertations

Over the last five years, solid state nanopore technology advanced to rival biological pores as a platform for next generation DNA sequencing. Fabrication improvements led to a reduction in nanopore diameter and membrane thickness, offering high precision sensing. Custom electronics were developed concomitant with low capacitance membranes for low-noise, high-bandwidth measurements. These advances improved our ability to detect small differences between translocating molecules and to measure short molecules translocating at high speeds.

This work focuses specifically on the challenge of maximizing the signal magnitude generated by the solid state nanopore. One way that this can be achieved is by thinning ...


Engineering Novel Nanostructures Via Chemical And Morphological Transformations, Rahul Agarwal Jan 2015

Engineering Novel Nanostructures Via Chemical And Morphological Transformations, Rahul Agarwal

Publicly Accessible Penn Dissertations

Materials at the nanoscale have revolutionized the world around us by enabling the discovery of novel size dependent properties and experimental verification of untested theoretical concepts. However, most nanomaterials today are phases of matter that are well known and have been studied extensively at the bulk scale. For example, II-VI semiconductors, which are widely studied today at the nanoscale, were employed in photovoltaic applications at the microscale for nearly half a century. The question that arises is whether material processing at the nanoscale can allow us to go beyond the limitations of conventional synthesis techniques? We believe that the next ...


The Optoelectronic Properties Of Surface-Modified Semiconductor Nanocrystal Solids, Earl D. Goodwin Jan 2015

The Optoelectronic Properties Of Surface-Modified Semiconductor Nanocrystal Solids, Earl D. Goodwin

Publicly Accessible Penn Dissertations

Colloidal semiconductor nanocrystals have emerged as fascinating new materials and gained interest in the last 30 years because of their size, shape, and compositionally tunable electronic and optical properties as well as their potential to serve as artificial atoms. Challenges and opportunities have arisen when assembling nanocrystals into nanocrystal solids for electronic and optoelectronic applications, largely because of the significant influence of nanocrystal surface chemistry on the electronic, optical, and structural properties of nanocrystal solids. In order to assemble nanocrystal solids for high performance devices, we must understand and be able to control the effects of nanocrystal surface organic capping ...


Temperature-Dependent Thermal And Electrical Conduction In Metallic Nanostructures, Zhe Cheng Jan 2015

Temperature-Dependent Thermal And Electrical Conduction In Metallic Nanostructures, Zhe Cheng

Graduate Theses and Dissertations

In this work, temperature dependent electrical and thermal conduction in the bio-supported 3.2 nm-thin Ir nanofilm and individual silver nanowire are studied at reduced temperatures. For the Ir film, by studying the temperature-dependent behavior (300 K down to 43 K) of electron thermal conductivity (), we quantify the extremely confined defect-electron scatterings and isolate the intrinsic phonon-electron scattering that is shared by the bulk Ir. At low temperatures below 50 K,  of the film has almost two orders of magnitude reduction from that of bulk Ir. The film has ∂/∂T>0 while the bulk Ir has ∂/∂T <0. We introduce a unified thermal resistivity (=T/) to interpret these completely different ~T relations. It is found that the film and the bulk Ir share a very similar ~T trend while they have a different residual part (Θ0) at 0 K limit: 0~0 for the bulk Ir, and 0=5.5 mK2/W for the film. The Ir film and the bulk Ir have very close ∂Θ/∂T (75 to 290 K): 6.33×10-3 mK/W for the film and 7.62×10-3 mK/W for the bulk Ir. This strongly confirms the similar phonon-electron scattering in them. The temperature dependent behavior of the Lorenz number of the Ir film is also reported down to 10 K. Due to the strong defect-electron scattering, a very large residual electrical resistivity (1.2410-7 ·m) is observed for the film that dominates the overall electron transport (1.24~1.5510-7 ·m). The Debye temperature (221 K) of the film is found much smaller than that of bulk (308 K). This phonon softening strongly confirms the extensive surface and grain boundary electron scatterings. We find the Wiedemann-Franz Law still applies to our film even at low temperatures. The overall Lorenz number and that of imperfect structure (~2.25×10-8 W·Ω/K2) are close to the Sommerfeld value and shows little temperature dependence. This is contrast to other studied low dimensional metallic structures that have a much larger Lorenz number (3~7×10-8 W·Ω/K2). Electron tunneling and hopping in the biomaterial substrate are speculated responsible for the observed Lorenz number.

Additionally, the thermal ...


Novel Engineered Nanomaterials For Water Remediation And Gas Adsorption: Graphene Oxide And Carbon Nanotubes Decorated With Metal-Organic Frameworks And Magnetic Nanoparticles, Vahid Jabbari Jan 2015

Novel Engineered Nanomaterials For Water Remediation And Gas Adsorption: Graphene Oxide And Carbon Nanotubes Decorated With Metal-Organic Frameworks And Magnetic Nanoparticles, Vahid Jabbari

Open Access Theses & Dissertations

In the current study, a series of novel magnetic and non-magnetic hybrid nanocomposites based on metal-organic frameworks (MOFs) of M3(BTC)2 (M: Ni, Cu, Zn, and Cd), graphene oxide (GrO), and carbon nanotubes (CNTs), and Fe3O4 magnetic nanoparticles (MNPs) were developed via a green, simple and versatile solvothermal method at which GrO and CNT were used as platform to grow the MOFs and Fe3O4 MNPs over them. The as-synthesized nanocomposites were characterized by XRD, SEM, TEM, XPS, IR, Raman, TGA, and N2 adsorption/desorption isotherms. Morphological analysis confirmed successful growth of nano-size Fe3O4 MNPs and M3(BTC)2 MOFs ...


Electronic Structure Evolution Of Fullerene On Ch3Nh3Pbi3, Chenggong Wang, Congcong Wang, Xiaoliang Liu, John Kauppi, Yuchuan Shao, Zhengguo Xiao, Cheng Bi, Jinsong Huang, Yongli Gao Jan 2015

Electronic Structure Evolution Of Fullerene On Ch3Nh3Pbi3, Chenggong Wang, Congcong Wang, Xiaoliang Liu, John Kauppi, Yuchuan Shao, Zhengguo Xiao, Cheng Bi, Jinsong Huang, Yongli Gao

Mechanical & Materials Engineering Faculty Publications

The thickness dependence of fullerene on CH3NH3PbI3 perovskite film surface has been investigated by using ultraviolet photoemission spectroscopy (UPS), X-ray photoemission spectroscopy (XPS), and inverse photoemission spectroscopy (IPES). The lowest unoccupied molecular orbital and highest occupied molecular orbital (HOMO) can be observed directly with IPES and UPS. It is observed that the HOMO level in fullerene shifts to lower binding energy. The XPS results show a strong initial shift of core levels to lower binding energy in the perovskite, which indicates that electrons transfer from the perovskite film to fullerene molecules. Further deposition of fullerene ...


Electron-Hole Diffusion Lengths >175 Μm In Solution-Grown Ch3Nh3Pbi3 Single Crystals, Qingfeng Dong, Yanjun Fang, Yuchuan Shao, Padhraic Mulligan, Jie Qiu, Lei Cao, Jinsong Huang Jan 2015

Electron-Hole Diffusion Lengths >175 Μm In Solution-Grown Ch3Nh3Pbi3 Single Crystals, Qingfeng Dong, Yanjun Fang, Yuchuan Shao, Padhraic Mulligan, Jie Qiu, Lei Cao, Jinsong Huang

Mechanical & Materials Engineering Faculty Publications

Long, balanced electron and hole diffusion lengths greater than 100 nanometers in polycrystalline CH3NH3PbI3 are critical for highly efficient perovskite solar cells. We report that the diffusion lengths in CH3NH3PbI3 single crystals grown by a solution-growth method can exceed 175 μm under 1 sun illumination and exceed 3 mm under weak light for both electrons and holes. The internal quantum efficiencies approach 100% in 3 mm-thick single crystal perovskite solar cells under weak light. These long diffusion lengths result from greater carrier mobility, lifetime and dramatically smaller trap densities in ...


In Situ Longitudinal Pre-Stretch In The Human Femoropopliteal Artery, Alexey Kamenskiy, Andreas Seas, Grant Bowen, Paul Deegan, Anastasia Desyatova, Nick Bohlim, William Poulson, Jason N. Mactaggart Jan 2015

In Situ Longitudinal Pre-Stretch In The Human Femoropopliteal Artery, Alexey Kamenskiy, Andreas Seas, Grant Bowen, Paul Deegan, Anastasia Desyatova, Nick Bohlim, William Poulson, Jason N. Mactaggart

Mechanical & Materials Engineering Faculty Publications

In situ longitudinal (axial) pre-stretch (LPS) plays a fundamental role in the mechanics of the femoropopliteal artery (FPA). It conserves energy during pulsation and prevents buckling of the artery during limb movement. We investigated how LPS is affected by demographics and risk factors, and how these patient characteristics associate with the structural and physiologic features of the FPA. LPS was measured in n=148 fresh human FPAs (14–80 years old). Mechanical properties were characterized with biaxial extension and histopathological characteristics were quantified with Verhoeff-Van Gieson Staining. Constitutive modeling was used to calculate physiological stresses and stretches which were then ...


Color And Texture Morphing With Colloids On Multilayered Surfaces, Ziguang Chen, Shumin Li, Andrew Arkebauer, George Gogos, Li Tan Jan 2015

Color And Texture Morphing With Colloids On Multilayered Surfaces, Ziguang Chen, Shumin Li, Andrew Arkebauer, George Gogos, Li Tan

Mechanical & Materials Engineering Faculty Publications

Dynamic morphing of marine species to match with environment changes in color and texture is an advanced means for surviving, self-defense, and reproduction. Here we use colloids that are placed inside a multilayered structure to demonstrate color and texture morphing. The multilayer is composed of a thermal insulating base layer, a light absorbing mid layer, and a liquid top layer. When external light of moderate intensity (∼0.2 W cm−2) strikes the structure, colloids inside the liquid layer will be assembled to locations with an optimal absorption. When this system is exposed to continuous laser pulses, more than 18 ...


Functional Silica-Encapsulated Photoactive Nanocrystals, Chia-Cheng Lin Jan 2015

Functional Silica-Encapsulated Photoactive Nanocrystals, Chia-Cheng Lin

Graduate Theses and Dissertations

Silica-based nanocomposites with core/shell configurations have diverse functionalities and applications. We present the preparation and characterization of Co3O4/porous-SiO2 nanocomposites with the examination of their catalytic activity in the dye sensitized water oxidation reaction; a generalized methodology to prepare metal chalcogenides/pnictides with one-pot and one-step manner; the synthesis of Au/Ag/SiO2 multishell nanorods and their application as imaging probes in single particle tracking experiments.

Silica supported Co3O4 nanocomposites have recently drawn much attention due to their high catalytic ability in the water oxidation reaction. We have synthesized several Co3O4/porous silica nanocomposites to study the synergetic effects ...


Thermal Behavior Of The Stm Tip Under Laser Irradiation, Christopher G. Reilly Jan 2015

Thermal Behavior Of The Stm Tip Under Laser Irradiation, Christopher G. Reilly

Graduate Theses and Dissertations

This thesis discusses the thermal behavior of the STM tip under laser irradiation. The thermal expansion of the tip was researched with varying laser spot size, frequency, location, and power. In order to determine the thermal expansion of the STM tip, the behavior in both the time and frequency domain were investigated. By employing the FFT analysis, the noise of the thermal behavior in the frequency domain was greatly reduced when compared to the time domain behavior, allowing for higher resolution expansions. With noise reduced, a thermal expansion of 1 nm, equating to a 0.03 K average temperature rise ...


Engineering A Library Of Anisotropic Building Blocks For Dna-Programmed Colloidal Self-Assembly, James Thomas Mcginley Jan 2015

Engineering A Library Of Anisotropic Building Blocks For Dna-Programmed Colloidal Self-Assembly, James Thomas Mcginley

Publicly Accessible Penn Dissertations

Programmable DNA interactions are an effective and versatile tool in the field of colloidal directed self-assembly. Colloidal systems are programmed by manipulating a variety of tunable parameters, such as particle sizes and DNA interaction strengths, and can self-assemble into a large and growing variety of colloidal crystal and gel structures. Since isotropically-interacting spherical particles generally form close-packed structures, the production and use of building blocks with anisotropic interactions, such as polyhedral particles, colloidal clusters, and patchy colloids, has been a rich research area in recent years.

This work represents a true expansion of the capabilities of DNA-directed colloidal assemblies, and ...


The Interaction Mechanisms Of A Screw Dislocation With A Defective Coherent Twin Boundary In Copper, Qiongjiali Fang Jan 2015

The Interaction Mechanisms Of A Screw Dislocation With A Defective Coherent Twin Boundary In Copper, Qiongjiali Fang

Graduate College Dissertations and Theses

Σ3{111} coherent twin boundary (CTB) in face-centered-cubic (FCC) metals and alloys have been regarded as an efficient way to simultaneously increase strength and ductility at the nanoscale. Extensive study of dislocation-CTB interaction has been carried out by a combination of computer simulations, experiments and continuum theory. Most of them, however, are based on the perfect CTB assumption. A recent study [Wang YM, Sansoz F, LaGrange T, et al. Defective twin boundaries in nanotwinned metals. Nat Mater. 2013;12(8):697-702.] has revealed the existence of intrinsic kink-like defects in CTBs of nanotwinned copper through nanodiffraction mapping technique, and has ...


Improving The Sensitivity Of A Near-Infrared Nanocomposite Photodetector By Enhancing Trap Induced Hole Injection, Liang Shen, Yanjun Fang, Qingfeng Dong, Zhengguo Xiao, Jinsong Huang Jan 2015

Improving The Sensitivity Of A Near-Infrared Nanocomposite Photodetector By Enhancing Trap Induced Hole Injection, Liang Shen, Yanjun Fang, Qingfeng Dong, Zhengguo Xiao, Jinsong Huang

Mechanical & Materials Engineering Faculty Publications

We report the enhancement of the photoconductive gain of nanocomposite near-infrared photodetectors by a zinc oxide nanoparticles (ZnO NPs) rich surface at the nanocomposite/cathode interface. An argon plasma etching process was used to remove polymer at the surface of nanocomposite films, which resulted in a ZnO NPs rich surface. The other way is to spin-coat a thin layer of ZnO NPs onto the nanocomposite layer. The ZnO NPs rich surface, which acts as electron traps to induce secondary hole injection under reverse bias, increased hole injection, and thus the external quantum efficiency by 2–3 times. The darkcurrent declined ...


Efficiency Enhancement In Polymer Solar Cells With A Polar Small Molecule Both At Interface And In The Bulk Heterojunction Layer, Zhengguo Xiao, Qingfeng Dong, Qi Wang, Wenjing Tian, Hui Huang, Jinsong Huang Jan 2015

Efficiency Enhancement In Polymer Solar Cells With A Polar Small Molecule Both At Interface And In The Bulk Heterojunction Layer, Zhengguo Xiao, Qingfeng Dong, Qi Wang, Wenjing Tian, Hui Huang, Jinsong Huang

Mechanical & Materials Engineering Faculty Publications

The polar molecules, including ferroelectric materials with large dipole moments, have been applied as interfacial layers to increase the efficiency of organic solar cells by increasing the bounded charge separation, tuning the energy levels, etc. Here, we report a small polar molecule 2-cyano-3- (4-(diphenylamino) phenyl)acrylic acid (TPACA) that can be either blended in the active layer or at the polymer/electrode interface to increase the efficiency of organic solar cell devices after poling. It is found that the built-in potential of the device is increased by 0.2 V after poling under negative bias. Blending TPACA into the ...


Chloride Incorporation Process In Ch3Nh3Pbi3-XClX Perovskites Via Nanoscale Bandgap Maps, Jungseok Chae, Qingfeng Dong, Jinsong Huang, Andrea Centrone Jan 2015

Chloride Incorporation Process In Ch3Nh3Pbi3-XClX Perovskites Via Nanoscale Bandgap Maps, Jungseok Chae, Qingfeng Dong, Jinsong Huang, Andrea Centrone

Mechanical & Materials Engineering Faculty Publications

CH3NH3PbI3-xClx perovskites enable fabrication of highly efficient solar cells. Chloride ions benefit the morphology, carrier diffusion length and stability of perovskite films; however, whether those benefits stem from the presence of Cl in the precursor solution or from their incorporation in annealed films is debated. In this work, the photothermal induced resonance (PTIR), an in situ technique with nanoscale resolution, is leveraged to measure the bandgap of CH3NH3PbI3-xClx films obtained by a multicycle coating process that produces high efficiency (≈16 %) solar cells. Because chloride ions modify ...


Relevance Of Blood Vessel Networks In Blast-Induced Traumatic Brain Injury, Yi Hua, Shengmao Lin, Linxia Gu Jan 2015

Relevance Of Blood Vessel Networks In Blast-Induced Traumatic Brain Injury, Yi Hua, Shengmao Lin, Linxia Gu

Mechanical & Materials Engineering Faculty Publications

Cerebral vasculature is a complex network that circulates blood through the brain. However, the role of this networking effect in brain dynamics has seldom been inspected. This work is to study the effects of blood vessel networks on dynamic responses of the brain under blast loading. Voronoi tessellations were implemented to represent the network of blood vessels in the brain. The brain dynamics in terms of maximumprincipal strain (MPS), shear strain (SS), and intracranial pressure (ICP) weremonitored and compared. Results show that blood vessel networks significantly affected brain responses.The increased MPS and SS were observed within the brain embedded ...


Role Of Interphase In The Mechanical Behavior Of Silica/Epoxy Resin Nanocomposites, Yi Hua, Linxia Gu, Sundaralingam Premaraj, Xiaodong Zhang Jan 2015

Role Of Interphase In The Mechanical Behavior Of Silica/Epoxy Resin Nanocomposites, Yi Hua, Linxia Gu, Sundaralingam Premaraj, Xiaodong Zhang

Mechanical & Materials Engineering Faculty Publications

A nanoscale representative volume element has been developed to investigate the effect of interphase geometry and property on the mechanical behavior of silica/epoxy resin nanocomposites. The role of interphase–matrix bonding was also examined. Results suggested that interphase modulus and interfacial bonding conditions had significant influence on the effective stiffness of nanocomposites, while its sensitivities with respect to both the thickness and the gradient property of the interphase was minimal. The stiffer interphase demonstrated a higher load-sharing capacity, which also increased the stress distribution uniformity within the resin nanocomposites. Under the condition of imperfect interfacial bonding, the effective stiffness ...


Towards Tuning The Mechanical Properties Of Three-Dimensional Collagen Scaffolds Using A Coupled Fiber-Matrix Model, Shengmao Lin, Lauren A. Hapach, Cynthia Reinhart-King, Linxia Gu Jan 2015

Towards Tuning The Mechanical Properties Of Three-Dimensional Collagen Scaffolds Using A Coupled Fiber-Matrix Model, Shengmao Lin, Lauren A. Hapach, Cynthia Reinhart-King, Linxia Gu

Mechanical & Materials Engineering Faculty Publications

Scaffold mechanical properties are essential in regulating the microenvironment of three-dimensional cell culture. A coupled fiber-matrix numerical model was developed in this work for predicting the mechanical response of collagen scaffolds subjected to various levels of non-enzymatic glycation and collagen concentrations. The scaffold was simulated by a Voronoi network embedded in a matrix. The computational model was validated using published experimental data. Results indicate that both non-enzymatic glycation-induced matrix stiffening and fiber network density, as regulated by collagen concentration, influence scaffold behavior. The heterogeneous stress patterns of the scaffold were induced by the interfacial mechanics between the collagen fiber network ...


Development And Preliminary Evaluation Of A Spray Deposition Sensing System For Improving Pesticide Application, Melissa A. Kesterson, Joe D. Luck, Michael P. Sama Jan 2015

Development And Preliminary Evaluation Of A Spray Deposition Sensing System For Improving Pesticide Application, Melissa A. Kesterson, Joe D. Luck, Michael P. Sama

Mechanical & Materials Engineering Faculty Publications

An electronic, resistance-based sensor array and data acquisition system was developed to measure spray deposition from hydraulic nozzles. The sensor surface consisted of several parallel tin plated copper traces of varying widths with varying gap widths. The system contained an embedded microprocessor to monitor output voltage corresponding to spray deposition every second. In addition, a wireless module was used to transmit the voltage values to a remote laptop. Tests were conducted in two stages to evaluate the performance of the sensor array in an attempt to quantify the spray deposition. Initial tests utilized manual droplet placement on the sensor surface ...