Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Engineering Science and Materials

The Synthesis Of Ultrafine And Nanocomposite Powders Based On Copper, Silver And Alumina, Zeljko J. Kamberovic Jan 2006

The Synthesis Of Ultrafine And Nanocomposite Powders Based On Copper, Silver And Alumina, Zeljko J. Kamberovic

Zeljko J Kamberovic

Contemporary materials with predetermined properties can be successfully synthesized by utilising the principles of hydrometallurgy and powder metallurgy. The results of developing a new procedure for the synthesis of ultrafine and nanocomposite powders based on copper, silver and alumina are presented in this paper. A two-component nanocomposite powder, Cu-Al2O3, was synthesized by a thermochemical procedure, by deposition from an aqueous solution of soluble metal salts, Cu(NO3)2 and Al(NO3)3. A three-component Cu-Ag-Al2O3 powder was produced by mechanically alloying nanocomposite Cu-Al2O3 powder and Cu-Ag powder, synthesized by the thermochemical procedure. The produced powders were characterized by determining the particle specific area, pouring …


Low Temperature Co-Fired Ceramics For Micro-Fluidics, John Youngsman, Brian Marx, Martin Schimpf, Scott Wolter, Jeff Glass, Amy Moll Jan 2006

Low Temperature Co-Fired Ceramics For Micro-Fluidics, John Youngsman, Brian Marx, Martin Schimpf, Scott Wolter, Jeff Glass, Amy Moll

Materials Science and Engineering Faculty Publications and Presentations

The miniaturization of analytical instruments and packaging of novel sensors is an area that has attracted significant research interest and offers many opportunities for product commercialization. Low Temperature Co-fired Ceramics (LTCC) is a materials system composed of alumina and glass in an organic binder. LTCC is a good choice for sensor development because of the ease of incorporating features in the ‘green’ or unfired state such as electrical traces, fluidic pathways and passive electrical components. After a firing cycle, what remains is a robust, monolithic device with features embedded in the package. In order for LTCC to be a successful …