Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering Science and Materials

Laser Powder Bed Fusion Process, Structure, And Properties: Holistic Approach To Establishing Metallurgical Quality, Hunter Taylor Dec 2022

Laser Powder Bed Fusion Process, Structure, And Properties: Holistic Approach To Establishing Metallurgical Quality, Hunter Taylor

Open Access Theses & Dissertations

The advent of metal additive manufacturing (AM) was posed as a disruption to casting, forging, machining, and forming with the notion "complexity is free". However, since invention in the late 1990's the marketed potential has not been realized. Metal based AM is best viewed from the process-structure-properties-performance (PSPP) paradigm taught in material science and engineering, which links the process history to the part performance. Understanding the complex and localized process control made available by AM creates a significant challenge in defining the materials structure, properties, and performance. The lack of holistic understating of inputs and corresponding results has been identified …


Pinless Friction Stir Spot Welding Of Ti-6al-4v Alloy For Aerospace Application, Hyojin Park May 2022

Pinless Friction Stir Spot Welding Of Ti-6al-4v Alloy For Aerospace Application, Hyojin Park

Doctoral Dissertations

Friction Stir Spot Welding (FSSW) is a newly developed solid-state joining technique with considerable merits over conventional spot-welding techniques, such as relatively simple procedure and excellent welding properties. It has been successfully implemented for the joining of light-weight structural materials, such as Al- and Mg-based alloys, with superior weldability and reduction of the manufacturing costs and energy consumption. In addition, by removing the pin from the friction stir spot welding tool, the pinless FSSW (p-FSSW) has minimized the formation of welding defects such as keyhole and hooking, which resulted in further improvements in the mechanical properties of weldments. However, the …


A Dislocation-Based Crystal Plasticity Model For Hexagonal Close-Packed Polycrystals, Omid Sedaghat Apr 2022

A Dislocation-Based Crystal Plasticity Model For Hexagonal Close-Packed Polycrystals, Omid Sedaghat

Electronic Thesis and Dissertation Repository

Due to their low neutron absorption cross-section and good corrosion properties, zirconium and its alloys have been widely used as the structural material in the core of nuclear reactors. These alloys are exposed to an intensive neutron flux which may lead to dimensional instabilities and the degradation of the mechanical properties of the alloy over the service time of the reactor. The changes in deformation behavior and mechanical properties can be traced back to the formation, evolution, and interaction of the irradiation-induced microstructural defects, e.g., point defect clusters, dislocation loops, and complex dislocation line networks. However, the materials constitutive models …