Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Engineering Science and Materials

Characterization Of Fcc Al-Cu-Ni-Mn-Ag High Entropy Alloy, Gina Zavala Alvarado Dec 2023

Characterization Of Fcc Al-Cu-Ni-Mn-Ag High Entropy Alloy, Gina Zavala Alvarado

Open Access Theses & Dissertations

The effect of Ag on the microstructure developed in Al-Cu-Ni-Mn alloy has been determined. The modified Al-Cu-Ni-Mn alloy by Ag addition shows the presence of three microconstituents consisting of phases rich in (1) Cu, (2) Ni, and (3) Ag. The foregoing alloys heated for 24 hours from 600 to 1000 °C show excellent oxidation resistance. Oxide formation and microstructural changes of the alloy have been characterized by elemental mapping and X-ray diffraction (XRD). Results show that the elements of Al and Mn preferentially oxidize while Cu and Ni provide oxidation resistance to the alloy. Hardness was taken on the alloy …


Physics-Based Crystal Plasticity Model For Predicting Microstructure Evolution And Dislocation Densities, Juyoung Jeong Mar 2023

Physics-Based Crystal Plasticity Model For Predicting Microstructure Evolution And Dislocation Densities, Juyoung Jeong

LSU Doctoral Dissertations

This work presents three different studies investigating plastic deformation mechanisms in metals and alloys using crystal plasticity finite element (CPFE) modeling. The first study presents a new nonlocal crystal plasticity model for face-centered cubic single crystals under heterogeneous inelastic deformation. The model incorporates generalized constitutive relations that incorporate the thermally activated and drag mechanisms to cover different kinetics of viscoplastic flow in metals and describes the plastic flow and yielding of single-crystals using dislocation densities. The model is compared to micropillar compression experiments for copper single crystals and clarifies the complex microstructural evolution of dislocation densities in metals. The second …


Laser Powder Bed Fusion Process, Structure, And Properties: Holistic Approach To Establishing Metallurgical Quality, Hunter Taylor Dec 2022

Laser Powder Bed Fusion Process, Structure, And Properties: Holistic Approach To Establishing Metallurgical Quality, Hunter Taylor

Open Access Theses & Dissertations

The advent of metal additive manufacturing (AM) was posed as a disruption to casting, forging, machining, and forming with the notion "complexity is free". However, since invention in the late 1990's the marketed potential has not been realized. Metal based AM is best viewed from the process-structure-properties-performance (PSPP) paradigm taught in material science and engineering, which links the process history to the part performance. Understanding the complex and localized process control made available by AM creates a significant challenge in defining the materials structure, properties, and performance. The lack of holistic understating of inputs and corresponding results has been identified …


Pinless Friction Stir Spot Welding Of Ti-6al-4v Alloy For Aerospace Application, Hyojin Park May 2022

Pinless Friction Stir Spot Welding Of Ti-6al-4v Alloy For Aerospace Application, Hyojin Park

Doctoral Dissertations

Friction Stir Spot Welding (FSSW) is a newly developed solid-state joining technique with considerable merits over conventional spot-welding techniques, such as relatively simple procedure and excellent welding properties. It has been successfully implemented for the joining of light-weight structural materials, such as Al- and Mg-based alloys, with superior weldability and reduction of the manufacturing costs and energy consumption. In addition, by removing the pin from the friction stir spot welding tool, the pinless FSSW (p-FSSW) has minimized the formation of welding defects such as keyhole and hooking, which resulted in further improvements in the mechanical properties of weldments. However, the …


A Dislocation-Based Crystal Plasticity Model For Hexagonal Close-Packed Polycrystals, Omid Sedaghat Apr 2022

A Dislocation-Based Crystal Plasticity Model For Hexagonal Close-Packed Polycrystals, Omid Sedaghat

Electronic Thesis and Dissertation Repository

Due to their low neutron absorption cross-section and good corrosion properties, zirconium and its alloys have been widely used as the structural material in the core of nuclear reactors. These alloys are exposed to an intensive neutron flux which may lead to dimensional instabilities and the degradation of the mechanical properties of the alloy over the service time of the reactor. The changes in deformation behavior and mechanical properties can be traced back to the formation, evolution, and interaction of the irradiation-induced microstructural defects, e.g., point defect clusters, dislocation loops, and complex dislocation line networks. However, the materials constitutive models …


Metal Coupon Testing In An Axial Rotating Detonation Engine For Wear Characterization, Gary S. North Jan 2020

Metal Coupon Testing In An Axial Rotating Detonation Engine For Wear Characterization, Gary S. North

Browse all Theses and Dissertations

Rotating Detonation Engines (RDE) are being explored as a possible way to get better fuel efficiency for turbine engines than is otherwise possible. The walls of the RDE are subjected to cyclic thermal and mechanical shock loading at rates of approximately 3 KHz, with gas temperatures as high as 2976 K. This project performed testing with Inconel 625 and 304 stainless steel coupons in an RDE outer body to attempt to measure material ablation rates. Significant microstructural changes were observed to include grain growth in both alloys, carbide formation and grain boundary melting in Inconel, and formation of delta ferrite …


Deformation Correlations And Machine Learning: Microstructural Inference And Crystal Plasticity Predictions, Michail Tzimas Jan 2019

Deformation Correlations And Machine Learning: Microstructural Inference And Crystal Plasticity Predictions, Michail Tzimas

Graduate Theses, Dissertations, and Problem Reports

The present thesis makes a connection between spatially resolved strain correlations and material processing history. Such correlations can be used to infer and classify prior deformation history of a sample at various strain levels with the use of Machine Learning approaches. A simple and concrete example of uniaxially compressed crystalline thin films of various sizes, generated by two-dimensional discrete dislocation plasticity simulations is examined. At the nanoscale, thin films exhibit yield-strength size effects with noisy mechanical responses which create an interesting challenge for the application of Machine Learning techniques. Moreover, this thesis demonstrates the prediction of the average mechanical responses …


3d Printing Of 316l Stainless Steel And Its Effect On Microstructure And Mechanical Properties, Rawn Penn Oct 2017

3d Printing Of 316l Stainless Steel And Its Effect On Microstructure And Mechanical Properties, Rawn Penn

Graduate Theses & Non-Theses

Laser powder bed fusion or 3D printing is a potential candidate for net shape forming and manufacturing complex shapes. Understanding of how various parameters affect build quality is necessary. Specimens were made from 316L stainless steel at 0°, 30°, 60°, and 90° angles measured from the build plate. Three tensile and four fatigue specimens at each angle were produced. Fracture morphology investigation was performed to determine the fracture mode of specimens at each build angle. Microstructural analysis was performed on one of each orientation. The average grain size of the samples was marginally influenced by the build angle orientation. Tensile …


Microstructure Control And Correlation To Creep Properties In Grade 91 Steel Weldment After Thermo-Mechanical Treatments And An Fe-30cr-3al Alloy Strengthened By Fe2nb Laves Phase, Benjamin Allen Shassere Dec 2016

Microstructure Control And Correlation To Creep Properties In Grade 91 Steel Weldment After Thermo-Mechanical Treatments And An Fe-30cr-3al Alloy Strengthened By Fe2nb Laves Phase, Benjamin Allen Shassere

Doctoral Dissertations

Type IV cracking in weldments of steel pipes after creep deformation is a concern in modern fossil-fueled power plants. Two possible methods for minimizing or eliminating Type IV cracking will be discussed. The first method alters the initial microstructure of typical Grade 91 steel base metal before welding, while the second provides baseline microstructure characteristics and creep performance of a new alloy that is strengthened by the intermetallic Fe2Nb Laves phase. The initial microstructure of the Grade 91 steel can be controlled by Thermo-Mechanical Treatments, which aids in precipitation of fine (5-10 nm) MX particles in austenite before transformation to …


Computational Study Of Microstructure-Propertymechanism Relations In Ferroic Composites, Fengde D. Ma Jan 2015

Computational Study Of Microstructure-Propertymechanism Relations In Ferroic Composites, Fengde D. Ma

Dissertations, Master's Theses and Master's Reports - Open

Ferroic materials, as notable members of smart materials, have been widely used in applications that perform sensing, actuation and control. The macroscopic property change of ferroic materials may become remarkably large during ferroic phase transition, leading to the fact that the macroscopic properties can be tuned by carefully applying a suitable external field (electric, magnetic, stress). To obtain an enhancement in physical and/or mechanical properties, different kinds of ferroic composites have been fabricated. The properties of a ferroic composite are determined not only by the properties and relative amounts of the constituent phases, but also by the microstructure of individual …


Microstructural Characterization And Heat Treatment Of A-286 Turbine Buckets, Christopher Michael Bradley Jan 2009

Microstructural Characterization And Heat Treatment Of A-286 Turbine Buckets, Christopher Michael Bradley

Open Access Theses & Dissertations

A-286 is an iron-based superalloy used extensively in land-based gas turbines for 2nd stage (low pressure) buckets and 1st and 2nd stage wheels. Although A-286 may appear to some as just another austenitic stainless steel, its elevated temperature properties are attributed to ' precipitate structures, effective distributions of alloy carbides in the forms of M23C6, M6C and MC, and solid solution strengthening. Unfortunately over the course of these components service lives microstructural degradation develops in the form of η-phase formation. The presence of η-phase, especially in large quantities, can have a negative effect on stress rupture properties. Resistance to creep …


Microstructural Characterization Of Overaged Gtd-111 Hp Turbine Buckets, Oscar Quintero Jan 2009

Microstructural Characterization Of Overaged Gtd-111 Hp Turbine Buckets, Oscar Quintero

Open Access Theses & Dissertations

Superalloys are metallic materials that exhibit excellent mechanical strength and creep resistance at high temperatures. They have good surface stability and are corrosion resistant. Superalloys are mostly used in the aerospace industry, gas turbine engines and blades (hot zones of gas turbines), and where extreme heat is encountered. The focus of this research was on the GTD-111 Ni-base superalloy, which is a General Electric (GE) proprietary superalloy mostly used in gas turbine blades with the form of high pressure or first stage buckets. This alloys features better mechanical properties, creep resistance, and a higher stress rupture temperature than the commonly …