Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering Science and Materials

Structure Property Relationships In Electron Donating Systems For Potential Photovoltaic Applications., Jonathan Moghal Jan 2008

Structure Property Relationships In Electron Donating Systems For Potential Photovoltaic Applications., Jonathan Moghal

Doctoral

Conjugated polymers are considered to be one-dimensional semiconductors. In conjugated polymers single and double bonds alternatively bond the carbon atoms along the polymer chain. The loosely bound electrons determine the electronic properties of conjugated polymers. In order to utilise the properties of conjugated polymers in terms of a photovoltaic (PV) device application an acceptor material must be added. The acceptor material used in this study is used in buckminsterfullerence (C60). C60 was selected for this purpose due to its size and the fact that it can accept up to six additional electrons. Ultrafast charge transfers from a conducting polymer onto …


Modeling The Effect Of Plasticizer On The Viscoelastic Response Of Crosslinked Polymers Using The Tube-Junction Model, P. P. Simon, Harry J. Ploehn Jan 2000

Modeling The Effect Of Plasticizer On The Viscoelastic Response Of Crosslinked Polymers Using The Tube-Junction Model, P. P. Simon, Harry J. Ploehn

Faculty Publications

Plasticizers modify the mechanical properties of polymericmaterials. The effects of plasticizers on glass transition temperatures can be most clearly observed in isochronal temperature sweep profiles of viscoelastic dynamic moduli. However, no simple mathematical models of plasticization are available to those who wish to design and employ plasticized materials in specific applications. We extend a phenomenological, molecular-level model (known as the tube–junction model) for crosslinked polymers to describe the effect of plasticizers on dynamic moduli. We show that the increase in free volume fraction due to the presence of the plasticizer can account for the shift in the glass transition in …


Molecular-Level Modeling Of The Viscoelasticity Of Crosslinked Polymers: Effect Of Time And Temperature, P. P. Simon, Harry J. Ploehn Jan 1997

Molecular-Level Modeling Of The Viscoelasticity Of Crosslinked Polymers: Effect Of Time And Temperature, P. P. Simon, Harry J. Ploehn

Faculty Publications

We present a new molecular-level picture of chain dynamics for describing the viscoelasticity of crosslinked polymers. The associated mathematical model consists of a time-dependent momentum balance on a representative polymer segment in the crosslinked network, plus phenomenological expressions for forces acting on the segments. These include a cohesive force that accounts for intermolecular attraction, an entropic force describing the thermodynamics governing chain conformations, and a frictional force that captures the temperature dependence of relative chain motion. We treat the case of oscillatory uniaxial deformation. Solution of the model equations in the frequency domain yields the dynamic moduli as functions of …