Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

2019

Discipline
Institution
Keyword
Publication

Articles 61 - 81 of 81

Full-Text Articles in Engineering Science and Materials

Medical Inflation, Attachment And Delivery Devices And Related Methods, Mark Rentschler, Shane Michael Farritor Jan 2019

Medical Inflation, Attachment And Delivery Devices And Related Methods, Mark Rentschler, Shane Michael Farritor

Department of Mechanical and Materials Engineering: Faculty Publications

The various embodiments disclosed herein relate to procedural space maintenance devices, medical device positioning devices, and devices that provide both procedural space maintenance and device positioning. Further embodiments relate to medical device insertion and/or retraction devices.


Wearable Devices For Single Cell Sensing And Transfection, Lingqian Chang, Yu-Chieh Wang, Faheem Ershad, Ruiguo Yang, Cunjiang Yu, Yubo Fan Jan 2019

Wearable Devices For Single Cell Sensing And Transfection, Lingqian Chang, Yu-Chieh Wang, Faheem Ershad, Ruiguo Yang, Cunjiang Yu, Yubo Fan

Department of Mechanical and Materials Engineering: Faculty Publications

Transdermal drug delivery systems have been successful for decades. Now these devices can be further scaled down, and their applications have been extended to wide selections of cargo, ranging from natural molecules (e.g., insulin and glucose) to bioengineered molecules (e.g., nanoparticles and vaccines). Some emerging nanopatches show promise for precise single-cell gene transfection in vivo and have advantages over conventional tools in terms of delivery efficiency, safety, and controllability of delivered dose. In this review, we discuss recent technical advances in wearable micro/nano devices with unique capabilities or potential for single-cell biosensing and transfection in the skin or other organs, …


Predictive Peridynamic 3d Models Of Pitting Corrosion In Stainless Steel With Formation Of Lacy Covers, Siavash Jafarzadeh, Florin Bobaru, Ziguang Chen Jan 2019

Predictive Peridynamic 3d Models Of Pitting Corrosion In Stainless Steel With Formation Of Lacy Covers, Siavash Jafarzadeh, Florin Bobaru, Ziguang Chen

Department of Mechanical and Materials Engineering: Faculty Publications

In this work, the peridynamic corrosion model is used for 3D simulation of pitting corrosion in stainless steel. Models for passivation and salt layer formation are employed to predict detailed characteristics of pit growth kinetic in stainless steels, such as lacy cover formation on top of the pit, and the diffusion-controlled regime at the pit bottom. The model is validated against an experimentally grown pit on 316L stainless steel in NaCl solution. Lacy covers in this model are formed autonomously during the simulation process. They are remarkably similar to the covers observed on top of the real pits.


Resistance To Helium Bubble Formation In Amorphous Sioc/Crystalline Fe Nanocomposite, Qing Su, Tianyao Wang, Jonathan Gigax, Lin Shao, Michael Nastasi Jan 2019

Resistance To Helium Bubble Formation In Amorphous Sioc/Crystalline Fe Nanocomposite, Qing Su, Tianyao Wang, Jonathan Gigax, Lin Shao, Michael Nastasi

Department of Mechanical and Materials Engineering: Faculty Publications

The management of radiation defects and insoluble He atoms represent key challenges for structural materials in existing fission reactors and advanced reactor systems. To examine how crystalline/amorphous interface, together with the amorphous constituents affects radiation tolerance and He management, we studied helium bubble formation in helium ion implanted amorphous silicon oxycarbide (SiOC) and crystalline Fe composites by transmission electron microscopy (TEM). The SiOC/Fe composites were grown via magnetron sputtering with controlled length scale on a surface oxidized Si (100) substrate. These composites were subjected to 50 keV He+ implantation with ion doses chosen to produce a 5 at% peak He …


Effects Of Compositional Tailoring On Drug Delivery Behaviours Of Silica Xerogel/Polymer Core-Shell Composite Nanoparticles, Wenfei Huang, Chi Pong Tsui, Chak Yin Tang, Linxia Gu Jan 2019

Effects Of Compositional Tailoring On Drug Delivery Behaviours Of Silica Xerogel/Polymer Core-Shell Composite Nanoparticles, Wenfei Huang, Chi Pong Tsui, Chak Yin Tang, Linxia Gu

Department of Mechanical and Materials Engineering: Faculty Publications

Conventional core-shell polymer nanoparticles usually exhibit a rapid release rate with their release kinetics mainly adjusted through changing composition of the polymer shells, limiting their applications for prolonged drug delivery. As a solution to these problems, silica xerogel/polymer core-shellstructured composite nanoparticles have been proposed. Different with our previous work centring on studying process variables, we here focused on investigating the effects of key compositional variables on essential properties of the composite nanoparticles. The drug release profiles (in vitro) were well interpreted by the Baker and Lonsdale model on a predicted two-stage basis. The first stage (<1 day) was well controlled from 18.6% to 45.9%; the second stage (1–14 days) was tailored in a range from 28.7 to 58.2% by changing the composition of the silica xerogel cores and polymeric shells. A substantial achievement was reducing the release rate by more than 40 times compared with that of conventional polymer nanoparticles by virtue of the silica xerogel cores. A semi-empirical model was also established in the first attempt to describe the effects of polymer concentration and drug loading capacity on the size of the composite nanoparticles. All these results indicated that the composite nanoparticles are promising candidates for prolonged drug delivery applications.


Correlation Microanalysis Of Localized Molecular Structure And Nano-Mechanical Property Of Pvdf Based Copolymer, Wen Qian, Shuo Sun, Charles Nguyen, Stephen Ducharme, Joesph A. Turner Jan 2019

Correlation Microanalysis Of Localized Molecular Structure And Nano-Mechanical Property Of Pvdf Based Copolymer, Wen Qian, Shuo Sun, Charles Nguyen, Stephen Ducharme, Joesph A. Turner

Department of Mechanical and Materials Engineering: Faculty Publications

Poly (vinylidenefluoride) (PVDF) and its copolymers, are well-recognized electroactive polymers. The PVDF polymer can crystallize in a quasi-hexagonal close-packed “β-phase” structure with the dipoles of all chains aligned with maximum spontaneous polarization [1-3]. Due to the limited availability of quantitative methods for nanoscale molecular structure and mechanical analysis, the polymer organization has not been fully optimized. For such ferroelectric polymers, the influence of nanoscale molecular structure on mechanical response is not well understood. In this paper, we demonstrate nanoscale characterization and measurement techniques, by comprehensive integrating atomic force microscopy (AFM), X-ray diffraction (XRD), nano-infrared (nanoIR) spectroscopy, nanoindentation, chemical nanoIR mapping, …


Mechanical Characterizations Of 3d-Printed Plla/Steel Particle Composites, Hozhabr Mozafari, Pengfei Dong, Haitham Hadidi, Michael P. Sealy, Linxia Gu Jan 2019

Mechanical Characterizations Of 3d-Printed Plla/Steel Particle Composites, Hozhabr Mozafari, Pengfei Dong, Haitham Hadidi, Michael P. Sealy, Linxia Gu

Department of Mechanical and Materials Engineering: Faculty Publications

The objective of this study is to characterize the micromechanical properties of poly-L-lactic acid (PLLA) composites reinforced by grade 420 stainless steel (SS) particles with a specific focus on the interphase properties. The specimens were manufactured using 3D printing techniques due to its many benefits, including high accuracy, cost effectiveness and customized geometry. The adopted fused filament fabrication resulted in a thin interphase layer with an average thickness of 3 μm. The mechanical properties of each phase, as well as the interphase, were characterized by nanoindentation tests. The effect of matrix degradation, i.e., imperfect bonding, on the elastic modulus of …


A Sensorless Force-Feedback System For Robot-Assisted Laparoscopic Surgery, Baoliang Zhao, Carl A. Nelson Jan 2019

A Sensorless Force-Feedback System For Robot-Assisted Laparoscopic Surgery, Baoliang Zhao, Carl A. Nelson

Department of Mechanical and Materials Engineering: Faculty Publications

The existing surgical robots for laparoscopic surgery offer no or limited force feedback, and there are many problems for the traditional sensor-based solutions. This paper builds a teleoperation surgical system and validates the effectiveness of sensorless force feedback. The tool-tissue interaction force at the surgical grasper tip is estimated using the driving motor’s current, and fed back to the master robot with a position-force bilateral control algorithm. The stiffness differentiation experiment and tumor detection experiment were conducted. In the stiffness differentiation experiment, 43 out of 45 pairs of ranking relationships were identified correctly, yielding a success rate of 96%. In …


Hemodynamic Interference Of Serial Stenoses And Its Impact On Ffr And Ifr Measurements, Siyeong Ju, Linxia Gu Jan 2019

Hemodynamic Interference Of Serial Stenoses And Its Impact On Ffr And Ifr Measurements, Siyeong Ju, Linxia Gu

Department of Mechanical and Materials Engineering: Faculty Publications

The hemodynamic interference of serial stenoses poses challenges for identifying the functional severity using the fractional flow reserve (FFR) method. The instantaneous wave-free ratio (iFR), i.e., the distal-to-proximal pressure ratio at 75% of diastole, was recently proposed to overcome the disadvantages of the FFR. However, the underlying mechanism remained ambiguous due to the lack of quantitative definition of hemodynamic interference. The objective of this study is to quantitatively define the hemodynamic interference and then examine its role on the FFR and iFR measurements. Pressure distributions, velocity fields, and Q-criterion which identifies vortices, were obtained through the computational fluid dynamics (CFD) …


Unveiling The Operation Mechanism Of Layered Perovskite Solar Cells, Yun Lin, Yanjun Fang, Jingjing Zhao, Yuchuan Shao, Samuel J. Stuard, Masrur Morshed Nahid, Harald Ade, Qi Wang, Jeffrey E. Shield, Ninghao Zhou, Andrew M. Moran, Jinsong Huang Jan 2019

Unveiling The Operation Mechanism Of Layered Perovskite Solar Cells, Yun Lin, Yanjun Fang, Jingjing Zhao, Yuchuan Shao, Samuel J. Stuard, Masrur Morshed Nahid, Harald Ade, Qi Wang, Jeffrey E. Shield, Ninghao Zhou, Andrew M. Moran, Jinsong Huang

Department of Mechanical and Materials Engineering: Faculty Publications

Layered perovskites have been shown to improve the stability of perovskite solar cells while its operation mechanism remains unclear. Here we investigate the process for the conversion of light to electrical current in high performance layered perovskite solar cells by examining its real morphology. The layered perovskite films in this study are found to be a mixture of layered and three dimensional (3D)-like phases with phase separations at micrometer and nanometer scale in both vertical and lateral directions. This phase separation is explained by the surface initiated crystallization process and the competition of the crystallization between 3D-like and layered perovskites. …


Predictive Peridynamic 3d Models Of Pitting Corrosion In Stainless Steel With Formation Of Lacy Covers, Siavash Jafarzadeh, Florin Bobaru, Ziguang Chen Jan 2019

Predictive Peridynamic 3d Models Of Pitting Corrosion In Stainless Steel With Formation Of Lacy Covers, Siavash Jafarzadeh, Florin Bobaru, Ziguang Chen

Department of Mechanical and Materials Engineering: Faculty Publications

In this work, the peridynamic corrosion model is used for 3D simulation of pitting corrosion in stainless steel. Models for passivation and salt layer formation are employed to predict detailed characteristics of pit growth kinetic in stainless steels, such as lacy cover formation on top of the pit, and the diffusion-controlled regime at the pit bottom. The model is validated against an experimentally grown pit on 316L stainless steel in NaCl solution. Lacy covers in this model are formed autonomously during the simulation process. They are remarkably similar to the covers observed on top of the real pits.


Relative Contributions Of Intracranial Pressure And Intraocular Pressure On Lamina Cribrosa Behavior, Junfei Tong, Deepta Ghate, Sachin Kedar, Linxia Gu Jan 2019

Relative Contributions Of Intracranial Pressure And Intraocular Pressure On Lamina Cribrosa Behavior, Junfei Tong, Deepta Ghate, Sachin Kedar, Linxia Gu

Department of Mechanical and Materials Engineering: Faculty Publications

Purpose. To characterize the relative contributions of intraocular pressure (IOP) and intracranial pressure (ICP) on lamina cribrosa (LC) behavior, specifically LC depth (LCD) and LC peak strain. Methods. An axially symmetric finite element model of the posterior eye was constructed with an elongated optic nerve and retro-orbital subarachnoid space ensheathed by pia and dura mater. -e mechanical environment in LC was evaluated with ICP ranging from 5 to 15mmHg and IOP from 10 to 45 mmHg. LCD and LC peak strains at various ICP and IOP levels were estimated using full factorial experiments. Multiple linear regression analyses were …


3d Printing Of Hybrid Mos2-Graphene Aerogels As Highly Porous Electrode Materials For Sodium Ion Battery Anodes, Emery Brown, Pengli Yan, Halil Tekik, Ayyappan Elangovan, Jian Wang, Dong Lin, Jun Li Jan 2019

3d Printing Of Hybrid Mos2-Graphene Aerogels As Highly Porous Electrode Materials For Sodium Ion Battery Anodes, Emery Brown, Pengli Yan, Halil Tekik, Ayyappan Elangovan, Jian Wang, Dong Lin, Jun Li

Department of Mechanical and Materials Engineering: Faculty Publications

This study reports a 3D freeze-printing method that integrates inkjet printing and freeze casting to control both the microstructure and macroporosity via formation of ice microcrystals during printing. A viscous aqueous ink consisting of a molecular MoS2 precursor (ammonium thiomolybdate) mixed with graphene oxide (GO) nanosheets is used in the printing process. Post-treatments by freeze-drying and reductive thermal annealing convert the printed intermediate mixture into a hybrid structure consisting of MoS2 nanoparticles anchored on the surface of 2D rGO nanosheets in a macroporous framework, which is fully characterized with FESEM, TEM, XRD, Raman spectroscopy and TGA. The resulting …


Design Rules For Additive Manufacturing – Understanding The Fundamental Thermal Phenomena To Reduce Scrap, M. Reza Yavari, Kevin D. Cole, Prahalada K. Rao Jan 2019

Design Rules For Additive Manufacturing – Understanding The Fundamental Thermal Phenomena To Reduce Scrap, M. Reza Yavari, Kevin D. Cole, Prahalada K. Rao

Department of Mechanical and Materials Engineering: Faculty Publications

The goal of this work is to predict the effect of part geometry and process parameters on the direction and magnitude of heat flow heat flux in parts made using metal additive manufacturing (AM) processes. As a step towards this goal, the objective of this paper is to develop and apply the mathematical concept of heat diffusion over graphs to approximate the heat flux in metal AM parts as a function of their geometry. This objective is consequential to overcome the poor process consistency and part quality in AM. Currently, part build failure rates in metal AM often exceed 20%, …


Optimization Of Protein-Protein Interaction Measurements For Drug Discovery Using Afm Force Spectroscopy, Yongliang Yang, Bixi Zeng, Zhiyong Sun, Amir Monemianesfahani, Jing Hou, Nian-Dong Jiao, Lianqing Liu, Liangliang Chen, Marc D. Basson, Lixin Dong, Ruiguo Yang, Ning Xi Jan 2019

Optimization Of Protein-Protein Interaction Measurements For Drug Discovery Using Afm Force Spectroscopy, Yongliang Yang, Bixi Zeng, Zhiyong Sun, Amir Monemianesfahani, Jing Hou, Nian-Dong Jiao, Lianqing Liu, Liangliang Chen, Marc D. Basson, Lixin Dong, Ruiguo Yang, Ning Xi

Department of Mechanical and Materials Engineering: Faculty Publications

Increasingly targeted in drug discovery, protein-protein interactions challenge current high throughput screening technologies in the pharmaceutical industry. Developing an effective and efficient method for screening small molecules or compounds is critical to accelerate the discovery of ligands for enzymes, receptors and other pharmaceutical targets. Here, we report developments of methods to increase the signal-to-noise ratio (SNR) for screening protein-protein interactions using atomic force microscopy (AFM) force spectroscopy. We have demonstrated the effectiveness of these developments on detecting the binding process between focal adhesion kinases (FAK) with protein kinase B (Akt1), which is a target for potential cancer drugs. These developments …


Self-Powered Ghz Solution-Processed Hybrid Perovskite Photodetectors, Jinsong Huang Jan 2019

Self-Powered Ghz Solution-Processed Hybrid Perovskite Photodetectors, Jinsong Huang

Department of Mechanical and Materials Engineering: Faculty Publications

Organic-inorganic hybrid perovskite (OIHP) based photo-responsive devices include an OIHP active layer disposed between a cathode layer and an anode layer, and an electron extraction layer disposed between the cathode layer and the active layer. The electron extraction layer includes a layer of C60 directly disposed on the active layer. The active layer includes an organometal trihalide perovskite layer (e.g., CH3NH3PbI2X, where X includes at least one of Cl, Br, or I).


Reliability Estimation Of Reciprocating Seals Based On Multivariate Dependence Analysis And It's Experimental Validation, Chao Zhang, Rentong Chen, Shaoping Wang, Yujie Qian, Mileta M. Tomovic Jan 2019

Reliability Estimation Of Reciprocating Seals Based On Multivariate Dependence Analysis And It's Experimental Validation, Chao Zhang, Rentong Chen, Shaoping Wang, Yujie Qian, Mileta M. Tomovic

Engineering Technology Faculty Publications

Accurate reliability estimation for reciprocating seals is of great significance due to their wide use in numerous engineering applications. This work proposes a reliability estimation method for reciprocating seals based on multivariate dependence analysis of different performance indicators. Degradation behavior corresponding to each performance indicator is first described by the Wiener process. Dependence among different performance indicators is then captured using D-vine copula, and a weight-based copula selection method is utilized to determine the optimal bivariate copula for each dependence relationship. A two-stage Bayesian method is used to estimate the parameters in the proposed model. Finally, a reciprocating seal degradation …


Experimental Verification Of Transparent Spin Mode In Rhic, V. S. Morozov, P. Adams, Y. S. Derbenev, Y. Filatov, H. Huang, A. M. Kondratenko, M. A. Kondratenko, F. Lin, F. Méot, V. Ptitsyn, W. B. Schmidke, Y. Zhang Jan 2019

Experimental Verification Of Transparent Spin Mode In Rhic, V. S. Morozov, P. Adams, Y. S. Derbenev, Y. Filatov, H. Huang, A. M. Kondratenko, M. A. Kondratenko, F. Lin, F. Méot, V. Ptitsyn, W. B. Schmidke, Y. Zhang

Engineering Technology Faculty Publications

High electron and ion polarizations are some of the key design requirements of a future Electron Ion Collider (EIC). The transparent spin mode, a concept inspired by the figure 8 ring design of JLEIC, is a novel technique for preservation and control of electron and ion spin polarizations in a collider or storage ring. It makes the ring lattice "invisible" to the spin and allows for polarization control by small quasi-static magnetic fields with practically no effect on the beam’s orbital characteristics. It offers unique opportunities for polarization maintenance and control in Jefferson Lab’s JLEIC and in BNL’s eRHIC. The …


Study Of Behavior Of Plastic Modified Bitumen By Incorporating Carbon Black, Ho-Fai Wong, Hao-Jue Hong, Lai-Ming Leung, Tsz-Chun Fong, Yi-Fei Shen, Tsz-Hin Lo Jan 2019

Study Of Behavior Of Plastic Modified Bitumen By Incorporating Carbon Black, Ho-Fai Wong, Hao-Jue Hong, Lai-Ming Leung, Tsz-Chun Fong, Yi-Fei Shen, Tsz-Hin Lo

Faculty of Science & Technology (THEi)

In recent years, the performance of polymer modified bitumen has been widely studied. This study reports a research carried out to investigate the properties of polymer modified bitumen (PMB) by using polypropylene as modifier, carbon black as additives, to examine the optimum ratio of polypropylene to carbon black. With this objective, sample preparation using wet mixing method combining high shear mix was firstly performed. Subsequently, 18 samples were developed for the study, of which the polypropylene (PP) contents 10%, 12%, 14%, 16%, 18% and 20% with 2%, 3%, 4% of carbon black content. Afterwards, samples were characterized by standard tests …


The Effect Of Curing And Zirconium Content On The Wettability And Structure Of A Silicate Hybrid Sol-Gel Material, Emma Machugh, Maikki Cullen, Alicja Kaworek, Brendan Duffy, Mohamed Oubaha Jan 2019

The Effect Of Curing And Zirconium Content On The Wettability And Structure Of A Silicate Hybrid Sol-Gel Material, Emma Machugh, Maikki Cullen, Alicja Kaworek, Brendan Duffy, Mohamed Oubaha

Articles

Functional hybrid sol-gel coatings have been developed for numerous applications with a wide range of wettabilities. This study proposes to investigate the relationship between the structure and the wetting properties of a zirconium modified silicate hybrid sol-gel coating. The structures of the coatings were altered by varying the content of zirconium, and the curing process, while keeping the sol-gel preparation conditions identical. The structure of the materials was characterized by FTIR, 29Si NMR and SEM. The thermal properties and the wettability are identified by DSC and contact angle measurements, respectively. By corroborating the structural and wettability analyses, it is shown …


Technological Cooperation Network In Biotechnology Analysis Of Patents With Brazil As The Priority Country, Cristiano Goncalves Pereira, Rodrigo Ribeiro Da Silva, Joao Ricardo Lavoie, Geciane Silveira Porto Jan 2019

Technological Cooperation Network In Biotechnology Analysis Of Patents With Brazil As The Priority Country, Cristiano Goncalves Pereira, Rodrigo Ribeiro Da Silva, Joao Ricardo Lavoie, Geciane Silveira Porto

Engineering and Technology Management Faculty Publications and Presentations

Purpose – The establishment of partnerships between companies, government and universities aims to enhance innovation and the technological development of institutions. The biotechnology sector has grown in recent years mainly driven by its cooperative business model. Compared to other countries, this sector is slowly advancing in Brazil, with delays in science, technology and innovation, especially in the private sector. This paper aims to examine, through social network analysis, the collaborative networks between institutions that filed patents in biotechnology – medicinal preparations from plants – whose inventions had Brazil as the priority country. Design/methodology/approach – The study of technological cooperation using …