Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

2012

Discipline
Institution
Keyword
Publication

Articles 31 - 37 of 37

Full-Text Articles in Engineering Science and Materials

Thickness-Shear And Thickness-Twist Modes In An Oblate Elliptical Ceramic Cylinder And Energy Trapping In Contoured Acoustic Wave Resonators, Huijing He, Jiashi Yang, Yi-Hua Huang Jan 2012

Thickness-Shear And Thickness-Twist Modes In An Oblate Elliptical Ceramic Cylinder And Energy Trapping In Contoured Acoustic Wave Resonators, Huijing He, Jiashi Yang, Yi-Hua Huang

Department of Mechanical and Materials Engineering: Faculty Publications

We study shear-horizontal motions of a piezoelectric ceramic cylinder with an oblate elliptical cross section and axial poling. Exact thickness-shear and thickness-twist vibration modes are obtained. These modes show energy trapping, i.e., the vibration is mainly confined near the thick, central region and decays to almost nothing near the edges. The results are useful for the understanding and design of contoured piezoelectric resonators for strong energy trapping.


Macro And Microfluidic Flows For Skeletal Regenerative Medicine, Brandon D. Riehl, Jung Yul Lim Jan 2012

Macro And Microfluidic Flows For Skeletal Regenerative Medicine, Brandon D. Riehl, Jung Yul Lim

Department of Mechanical and Materials Engineering: Faculty Publications

Fluid flow has a great potential as a cell stimulatory tool for skeletal regenerative medicine, because fluid flow-induced bone cell mechanotransduction in vivo plays a critical role in maintaining healthy bone homeostasis. Applications of fluid flow for skeletal regenerative medicine are reviewed at macro and microscale. Macroflow in two dimensions (2D), in which flow velocity varies along the normal direction to the flow, has explored molecular mechanisms of bone forming cell mechanotransduction responsible for flow-regulated differentiation, mineralized matrix deposition, and stem cell osteogenesis. Though 2D flow set-ups are useful for mechanistic studies due to easiness in in situ and post-flow …


Systems And Synthetic Biology Of The Vessel Wall, Jennifer Frueh, Nataly Maimari, Ying Lui, Zoltan Kis, Vikram Mehta, Negin Pormehr, Calum Grant, Emmanuel Chalkias, Mika Falck-Hansen, Sandra Bovens, Ryan M. Pedrigi, Taka Homma, Gianfillippo Coppola, Rob Krams Jan 2012

Systems And Synthetic Biology Of The Vessel Wall, Jennifer Frueh, Nataly Maimari, Ying Lui, Zoltan Kis, Vikram Mehta, Negin Pormehr, Calum Grant, Emmanuel Chalkias, Mika Falck-Hansen, Sandra Bovens, Ryan M. Pedrigi, Taka Homma, Gianfillippo Coppola, Rob Krams

Department of Mechanical and Materials Engineering: Faculty Publications

Atherosclerosis is intimately coupled to blood flow by the presence of predilection sites. The coupling is through mechanotransduction of endothelial cells and approximately 2000 gene are associated with this process. This paper describes a new platform to study and identify new signalling pathways in endothelial cells covering an atherosclerotic plaque. The identified networks are synthesized in primary cells to study their reaction to flow. This synthetic approach might lead to new insights and drug targets.


Monitoring The Wall Mechanics During Stent Deployment In A Vessel, Brian Steinert, Shijia Zhao, Linxia Gu Jan 2012

Monitoring The Wall Mechanics During Stent Deployment In A Vessel, Brian Steinert, Shijia Zhao, Linxia Gu

Department of Mechanical and Materials Engineering: Faculty Publications

Clinical trials have reported different restenosis rates for various stent designs . It is speculated that stentinduced strain concentrations on the arterial wall lead to tissue injury, which initiates restenosis . This hypothesis needs further investigations including better quantifications of non-uniform strain distribution on the artery following stent implantation. A non-contact surface strain measurement method for the stented artery is presented in this work. ARAMIS stereo optical surface strain measurement system uses two optical high speed cameras to capture the motion of each reference point, and resolve three dimensional strains over the deforming surface. As a mesh stent is deployed …


Sacrificial Structure Preforms For Thin Part Machining, Scott Smith, Robert Wilhelm, Brian Dutterer, Harish Cherukuri, Gaurav Goel Jan 2012

Sacrificial Structure Preforms For Thin Part Machining, Scott Smith, Robert Wilhelm, Brian Dutterer, Harish Cherukuri, Gaurav Goel

Department of Mechanical and Materials Engineering: Faculty Publications

Thin parts are often difficult to create by machining because they have insufficient static and dynamic stiffness. Accurate thin parts are difficult to achieve due to clamping forces, cutting forces, residual stresses, and chatter. Sacrificial structure preforms support the part during machining, but they are not part of the finished component. Preforms may be created in many ways, including forging, welding, gluing, casting, or additive processes. They can be used in many workpiece materials including metals, polymers, and ceramics. We describe a novel process that uses sacrificial structures to make machining insensitive to the thinness of finished parts.


Coupled Electromagnetic And Heat Transfer Model For Microwave Heating In Domestic Ovens, Krishnamoorthy Pitchai, Sohan Birla, Jeyamkondan Subbiah, D. D. Jones, Harshanardhan Thippareddi Jan 2012

Coupled Electromagnetic And Heat Transfer Model For Microwave Heating In Domestic Ovens, Krishnamoorthy Pitchai, Sohan Birla, Jeyamkondan Subbiah, D. D. Jones, Harshanardhan Thippareddi

Department of Food Science and Technology: Faculty Publications

Microwave ovens are used extensively for heating a variety of not-ready-to-eat food products. Non-uniform heating of foods in microwave ovens is a major concern in assuring microbiological safety of such products. The non-uniform heating of foods is attributed by complex interaction of microwaves with foods. To understand this complex interaction, a comprehensive model was developed to solve coupled electromagnetic and heat transfer equations using finite-difference time-domain based commercial software. The simulation parameters, cell size, heating time step, and number of iterations for steady state electromagnetic field were optimized. The model was validated by 30 s heating profile of a cylindrical …


Optical Detection Of Melting Point Depression For Silver Nanoparticles Via In Situ Real Time Spectroscopic Ellipsometry, S. A. Little, T. Begou, R. W. Collins, S. Marsillac Jan 2012

Optical Detection Of Melting Point Depression For Silver Nanoparticles Via In Situ Real Time Spectroscopic Ellipsometry, S. A. Little, T. Begou, R. W. Collins, S. Marsillac

Electrical & Computer Engineering Faculty Publications

Silver nanoparticle films were deposited by sputtering at room temperature and were annealed while monitoring by real time spectroscopic ellipsometry (SE). The nanoparticle dielectric functions (0.75 eV-6.5 eV) obtained by SE were modeled using Lorentz and generalized oscillators for the nanoparticle plasmon polariton (NPP) and interband transitions, respectively. The nanoparticle melting point could be identified from variations in the oscillator parameters during annealing, and this identification was further confirmed after cooling through significant, irreversible changes in these parameters relative to the as-deposited film. The variation in melting point with physical thickness, and thus average nanoparticle diameter, as measured by SE …