Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 20 of 20

Full-Text Articles in Engineering Science and Materials

Assessing Mechanical Performance Of Dissimilar Steel Systems Made Via Wire-Arc Additive Manufacturing, Obed Daniel Acevedo Dec 2021

Assessing Mechanical Performance Of Dissimilar Steel Systems Made Via Wire-Arc Additive Manufacturing, Obed Daniel Acevedo

Masters Theses

Hot stamping is part of a specific type of metalworking procedure widely used in the automotive industry. This research seeks to help make hot stamp tooling component production more cost-effective by using large-scale additive manufacturing. Additive manufacturing can produce dissimilar steel components that can be more cost-effective and time-efficient and allow for complex geometries to be made. A dissimilar steel system consisting of 410 martensitic stainless steel and AWS ER70S-6 mild steel is proposed to make hot stamps, making them more cost-efficient. However, the material interface's mechanical behavior in 410SS-mild steel additively manufactured material systems is not well understood. This …


High Strain Rate Dynamic Response Of Aluminum 6061 Micro Particles At Elevated Temperatures And Varying Oxide Thicknesses Of Substrate Surface, Carmine Taglienti Jul 2018

High Strain Rate Dynamic Response Of Aluminum 6061 Micro Particles At Elevated Temperatures And Varying Oxide Thicknesses Of Substrate Surface, Carmine Taglienti

Masters Theses

Cold spray is a unique additive manufacturing process, where a large number of ductile metal micro particles are deposited to create new surface coatings or free-standing structures. Metallic particles are accelerated through a gas stream, reaching velocities of over 1 km/s. Accelerated particles experience a high-strain-rate microscopic ballistic collisions against a target substrate. Large amounts of kinetic energy results in extreme plastic deformation of the particles and substrate. Though the cold spray process has been in use for decades, the extreme material science behind the deformation of particles has not been well understood due to experimental difficulties arising from the …


Modeling Of Dislocation Channel Formation And Evolution In Irradiated Metals, Peter James Doyle Dec 2017

Modeling Of Dislocation Channel Formation And Evolution In Irradiated Metals, Peter James Doyle

Masters Theses

Defect-free dislocation channel formation has been reported to promote plastic instability during tensile testing via localized plastic flow, leading to a distinct loss of ductility and strain hardening in many low-temperature irradiated materials. In order to study the underlying mechanisms governing dislocation channel width and formation, the channel formation process is modeled via a simple stochastic dislocation-jog process dependent upon grain size, defect cluster density, and defect size. Dislocations traverse a field of defect clusters and jog stochastically upon defect interaction, forming channels of low defect-density. Based upon prior molecular dynamics (MD) simulations and in-situ experimental transmission electron microscopy (TEM) …


Numerical Simulation Of Multi-Phase Core-Shell Molten Metal Drop Oscillations, Kaushal Sumaria Oct 2017

Numerical Simulation Of Multi-Phase Core-Shell Molten Metal Drop Oscillations, Kaushal Sumaria

Masters Theses

The surface tension of liquid metals is an important and scientifically interesting parameter which affects many metallurgical processes such as casting, welding and melt spinning. Conventional methods for measuring surface tension are difficult to use for molten metals above temperatures of 1000 K. Containerless methods are can be used to measure the surface tension of molten metals above 1000 K. Oscillating drop method is one such method where a levitated droplet is allowed to undergo damped oscillations. Using the Rayleigh’s theory for the oscillation of force-free inviscid spherical droplets, surface tension and viscosity of the sample can be calculated from …


The Modification Of A Curtain Coating Formulation: A Study Of Rheology And Surface Tension, And Their Effect On Pitting, Samantha Leigh Schoenfelder Jun 2017

The Modification Of A Curtain Coating Formulation: A Study Of Rheology And Surface Tension, And Their Effect On Pitting, Samantha Leigh Schoenfelder

Masters Theses

When an undisclosed recycled fiber mill installed a “two-slotted” curtain coater to replace their air knife coater, a prominent defect arose known as “pitting,” which is also called pinholing or cratering. Pitting occurs when the coating of the sheet has small holes that mar its surface, which, when clustered together or larger in size, can cause print breakup during the printing process.

Through research, pitting is known to be caused by a boundary layer of air that gets laterally pulled in between the coating and board during their initial contact. Thus, rheological properties and the surface tension of the curtain …


Development Of An Effective Portable And Flexible Glove For Hand Tremor Suppression, Abdulrahem Turkistani Apr 2017

Development Of An Effective Portable And Flexible Glove For Hand Tremor Suppression, Abdulrahem Turkistani

Masters Theses

This paper presents the work carried out in designing and developing a prototype for a tremor suppression system that reduces hand tremor by counteracting vibrations initiated from a patient’s shaking hand. This system includes a glove with a built-in vibration simulation module that oscillates and mimics the hand vibration. The oscillation is generated by a DC motor mounted on the top of the glove, and can vary in degree of vibration. The glove is also equipped with an accelerometer-gyroscope based micro-electromechanical system (MEMS) and vibrating coin motors mounted on each finger, both interfaced with a microcontroller. The microcontroller used in …


High Performance Silver Diffusive Memristors For Future Computing, Rivu Midya Mar 2017

High Performance Silver Diffusive Memristors For Future Computing, Rivu Midya

Masters Theses

Sneak path current is a significant remaining obstacle to the utilization of large crossbar arrays for non-volatile memories and other applications of memristors. A two-terminal selector device with an extremely large current-voltage nonlinearity and low leakage current could solve this problem. We present here a Ag/oxide-based threshold switching (TS) device with attractive features such as high current-voltage nonlinearity (~1010), steep turn-on slope (less than 1 mV/dec), low OFF-state leakage current (~10-14 A), fast turn ON/OFF speeds (<75/250 ns), and good endurance (>108 cycles). The feasibility of using this selector with a typical memristor has been demonstrated by physically integrating them …


Development Of Lignin Carbon Fiber And Reinforced Composites, Nathan Kieran Meek Dec 2016

Development Of Lignin Carbon Fiber And Reinforced Composites, Nathan Kieran Meek

Masters Theses

The aim of this work is to develop lignin carbon fiber for composite applications. This included mechanical testing of single lignin carbon fiber (LCF), interfacial shear strength determination for LCF-resin systems using single fiber fragmentation, x-ray diffraction for the evaluation of microstructural parameters, and finally composite manufacturing and testing. Through these focused areas of analysis, the carbon fiber is thoroughly characterized and composite performance is evaluated. This effort was a collaboration with the Center for Renewable Carbon (CRC) and the Civil and Environmental Engineering Department. LCF produced by the CRC resulted in fibers having tensile strength of 250-800 MPa and …


Cold Gas Dynamic Spray – Characterization Of Polymeric Deposition, Trenton Bush Nov 2016

Cold Gas Dynamic Spray – Characterization Of Polymeric Deposition, Trenton Bush

Masters Theses

When a solid, ductile particle impacts a substrate at sufficient velocity, the resulting heat, pressure, and plastic deformation can produce bonding at the interface. The use of a supersonic gas flow to accelerate such particles is known as Cold Spray deposition. The Cold Spray process has been commercialized for some metallic materials, but further research is required to unlock the exciting material properties possible with polymeric compounds. In this work, a combined computational and experimental study a) simulated and optimized the nozzle flow conditions necessary to produce bonding in a polyethylene particle, b) developed and fabricated an experimental device, and …


Modeling And Experimental Investigation On The Influence Of Radiation Defects On Helium Behavior In Bcc Iron, Zuya Huang May 2016

Modeling And Experimental Investigation On The Influence Of Radiation Defects On Helium Behavior In Bcc Iron, Zuya Huang

Masters Theses

Fe-based alloys are important structural materials for both fission and fusion energy. For fusion applications, the challenges of radiation-induced changes in microstructure, properties and performance is further challenged by the concomitant production of helium from (n, alpha) nuclear reactions and fusion reactions. Due to the lack of a volumetric, high flux 14-MeV neutron source, studying these phenomena require the use of computational materials modeling and novel experimental methods. In this thesis, molecular dynamics (MD) simulations was used to investigate the synergistic interactions of helium with prismatic dislocation loops characteristic of those observed in neutron irradiated iron to determine how the …


Integrated Solar Technologies With Outdoor Pedestrian Bridge Superstructure Decking, Richard K. Racz Mar 2016

Integrated Solar Technologies With Outdoor Pedestrian Bridge Superstructure Decking, Richard K. Racz

Masters Theses

Solar technology has been a major topic in sustainable design for many years. In the last five years, however, the solar technology industry has seen a rapid growth in installations and technological advances in cell design. Combined with a rapidly declining overall system cost, the idea of introducing solar technology into a wider range of applications is becoming a focus for engineers and scientists around the world. So many variables which alter solar energy production, such as the sun and surrounding environment, determine whether a solar design is beneficial. This thesis presents a bridge deck surface integrated with solar cells …


Impact Of Fuel Rod Coatings On Reactor Performance And Safety, Ian Robert Stewart May 2015

Impact Of Fuel Rod Coatings On Reactor Performance And Safety, Ian Robert Stewart

Masters Theses

This study evaluates the use of a ceramic coating on the Zr-alloy cladding within a PWR using four ceramic compounds of 5 and 10 micron thicknesses: ZrO2, TiAlN, Ti2AlC, and Ti3AlC2. The film’s impact is assessed for variation on: reactivity, fuel cycle length, maximum temperature, film’s roughness, and transient conditions. The reactivity is analyzed using the following methods: change in the multiplication factor (k) each film introduces to the system using the ABH method, and Monte Carlo software (MCNP). Both methods are in good agreement, yielding less than half a percent change from a reference, no-film fuel pin. In order …


Self-Supported Printed Multi-Layer Capacitors, Michael James Joyce Aug 2014

Self-Supported Printed Multi-Layer Capacitors, Michael James Joyce

Masters Theses

The increasing demand for miniaturized electronic devices has increased the need for rechargeable micro-power sources. Although lithium and lithium ion batteries have been utilized in these applications since the late 1990s, other energy harvesting technologies, such as thermal, mechanical, and solar, are now being used to augment batteries to enable systems to be self-powered. However, the lifetime of any battery is finite, which may be a major problem when the application is in a permanent structure or medical implant device. For power or significant energy storage applications, printed multilayer capacitors or supercapacitors are being explored as an enhancement, or replacement …


Radiation-Induced Radicals In Polyurea-Crosslinked Silica Aerogel, Benjamin Michael Walters Aug 2014

Radiation-Induced Radicals In Polyurea-Crosslinked Silica Aerogel, Benjamin Michael Walters

Masters Theses

Free radicals are atoms or molecules with an odd number of electrons in an outer shell. Since electrons typically occur in pairs, this leaves one electron that is unpaired. In seek of another electron to pair with, free radicals react with and steal electrons from neighboring molecules, which then become free radicals themselves. This can start a chain reaction, cascading into large scale damage.

Ionizing radiation can tear through molecules, just as bullets can tear through things that we see. If free radicals can be detected, and seen to increase in a material upon radiation exposure, this can indicate molecular …


A Novel Silica-Based Nano Pigment As A Titanium Dioxide Replacement, Ryan Stoneburner Jun 2014

A Novel Silica-Based Nano Pigment As A Titanium Dioxide Replacement, Ryan Stoneburner

Masters Theses

This research focused on the evaluation of a new Silica-based pigment for the replacement of titanium dioxide (TiO2) in paperboard coatings. The silica-based pigment has shown the ability to be a replacement in terms of functionality and runnability. TiO2 is currently the highest opacifying pigment used in paper coatings, but it is also the most costly. Finding a less expensive pigment that doesn't reduce effectiveness is critical to reducing the cost of TiO2 formulations. To evaluate the new pigment, coatings will be applied using a Cylindrical Laboratory Coater (CLC) with varying amounts of TiO2 and …


Structural Analysis Of The Tablerock Thrust Sheet, Grandfather Mountain Window, Northwestern North Carolina: Emplacement Kinematics Of A Large Horse In A Major Thrust System, Ann Elizabeth Walker May 2014

Structural Analysis Of The Tablerock Thrust Sheet, Grandfather Mountain Window, Northwestern North Carolina: Emplacement Kinematics Of A Large Horse In A Major Thrust System, Ann Elizabeth Walker

Masters Theses

The Tablerock thrust sheet is exposed along the southwestern margin of Grandfather Mountain window in northwestern North Carolina, where it separates basement and cover rocks inside the window from basement thrust sheets of the overriding Blue Ridge-Piedmont megathrust sheet. It is a complex of footwall-derived horses of rifted-margin metasedimentary rocks, including Neoproterozoic to Early Cambrian Chilhowee Group quartzite and phyllite, and Shady Dolomite. Penetrative deformation throughout the Tablerock thrust sheet is defined by an extensively transposed foliation, and strong colinearity between well developed transport lineations and SE/NW-trending tight, isoclinal, and sheath folds. Centimeter- to meter-scale sheath folds are common throughout …


An Automated Finite Element Analysis Framework For The Probabilistic Evaluation Of Composite Lamina Properties, Jonathan Phillips Weigand Dec 2013

An Automated Finite Element Analysis Framework For The Probabilistic Evaluation Of Composite Lamina Properties, Jonathan Phillips Weigand

Masters Theses

This thesis outlines the development of computational modeling tools used to predict the elastic properties of composite lamina from representative volume elements (RVE) using numerical methods. The homogenization approach involves the use of Gauss’s Theorem to simply the average volumetric strain integral into a surface integral containing which is defined by surface displacements and their direction. Simulations of RVEs under specific loading conditions (longitudinal tension or shear and transverse tension or shear) are then performed in the software package ABAQUS to obtain the surface displacements. It was found that obtaining quality meshes and applying periodic boundary conditions for each RVE …


Effect Of Moisture Absorption On The Sinter Quality Of Central Solenoid (Cs) Coil Pack, Zeshaan Sher Mohammed Dec 2010

Effect Of Moisture Absorption On The Sinter Quality Of Central Solenoid (Cs) Coil Pack, Zeshaan Sher Mohammed

Masters Theses

Fusion energy has been said to be the solution to all the world’s energy problems. The International Thermonuclear Experimental Reactor (ITER) is the flagship project to demonstrate the feasibility of fusion energy. The Central Solenoid (CS), an important component of the reactor, is needed to induce plasma current, initiate, ramp-up, ramp-down, and sustain plasma in a very controlled manner. In order to achieve this, the CS coil packs must be manufactured under controlled conditions. The CS conductor is an advanced cable-in-conduit Nb3Sn superconductor. The CS cable will be made in long continuous sections but with thousands of meter of cable …


Methods For Characterizing Mechanical Properties Of Wood Cell Walls Via Nanoindentation, Yujie Meng Aug 2010

Methods For Characterizing Mechanical Properties Of Wood Cell Walls Via Nanoindentation, Yujie Meng

Masters Theses

Nanoindentation is a method of contacting a material whose mechanical properties are unknown with another material whose properties are known. Nanoindentation has the advantage of being able to probe a material’s microstructure while being sensitive enough to detect variations in mechanical properties. However, nanoindentation has some limitations as a testing technique due to the specific formation and structure of some biomaterials. The main objective of this research is to identify any factors that influence the nanoindentation measurement of wood cell walls (a typical biomaterial).

The function of the embedding media in describing the properties of wood cells is poorly understood. …


Nonlinear Finite Element Micromechanic Analysis Of Thermoplastic Composite Of Recycled High Density Polyethylene Reinforced With Short Glass Fibers, Qiming Lou Jan 1995

Nonlinear Finite Element Micromechanic Analysis Of Thermoplastic Composite Of Recycled High Density Polyethylene Reinforced With Short Glass Fibers, Qiming Lou

Masters Theses

This thesis studied the nonlinear micromechanic behavior of thermoplastic composite of recycled high density polyethylene (HDPE) reinforced with short glass fibers using finite element method. The composite material was modeled using a micromechanic unit cell to simulate the stress distribution between the plastic matrix and the fiber in the composite. Nonlinear behavior of recycled HDPE and imperfect bonding between the fiber and matrix were investigated. Load-bearing capability of the fiber was evaluated using stress partition ratio (SPR) in the composite models. The effect of fiber aspect ratio on the stress distribution of the composite was studied to optimize the material …