Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering Science and Materials

Transient Effects In Solution-Processed Organic Thin Films, Jing Wan Jan 2021

Transient Effects In Solution-Processed Organic Thin Films, Jing Wan

Graduate College Dissertations and Theses

Due to the weak van der Waals forces between organic semiconductor molecules, the molecular packing depends sensitively on the processing methods and conditions. Thus, understanding the crystallization mechanisms during solution deposition are essential for fundamental studies and reproducible fabrication of electronic devices.The performance of Organic field effect transistors (OFETs) also depends heavily on extrinsic factors such as contact resistance and interfacial defects, which can produce a different kind of transient effect at the metal-semiconductor contact. We have observed structural transient effects during the crystallization process of two small molecule organic semiconductors made from solution. We report in situ X-ray scattering …


Excitonic States In Crystalline Organic Semiconductors: A Condensed Matter Approach, Lane Wright Manning Jan 2016

Excitonic States In Crystalline Organic Semiconductors: A Condensed Matter Approach, Lane Wright Manning

Graduate College Dissertations and Theses

In this work, a new condensed matter approach to the study of excitons based on crystalline thin films of the organic molecule phthalocyanine is introduced. The premise is inspired by a wealth of studies in inorganic semiconductor ternary alloys (such as AlGaN, InGaN, SiGe) where tuning compositional disorder can result in exciton localization by alloy potential fluctuations. Comprehensive absorption, luminescence, linear dichroism and electron radiative lifetime studies were performed on both pure and alloy samples of metal-free octabutoxy-phthalocyanine and transition metal octabutoxy-phthalocyanines, where the metal is Mn, Co, Ni, and Cu. Varying the ratios of the metal to metal-free phthalocyanines …


Exchange Mechanisms In Macroscopic Ordered Organic Magnetic Semiconductors, Naveen Rawat Jan 2015

Exchange Mechanisms In Macroscopic Ordered Organic Magnetic Semiconductors, Naveen Rawat

Graduate College Dissertations and Theses

Small molecule organic semiconductors such as phthalocyanines and their derivatives represent a very interesting alternative to inorganic semiconductor materials for the development of flexible electronic devices such as organic thin field effect transistors, organic Light Emitting Diodes and photo-voltaic cells. Phthalocyanine molecules can easily accommodate a variety of metal atoms as well in the central core of the molecule, resulting in wide range of magnetic properties. Exploration of optical properties of organic crystalline semiconductors thin films is challenging due to sub-micron grain sizes and the presence of numerous structural defects, disorder and grain boundaries. However, this can be overcome by …


The Interaction Mechanisms Of A Screw Dislocation With A Defective Coherent Twin Boundary In Copper, Qiongjiali Fang Jan 2015

The Interaction Mechanisms Of A Screw Dislocation With A Defective Coherent Twin Boundary In Copper, Qiongjiali Fang

Graduate College Dissertations and Theses

Σ3{111} coherent twin boundary (CTB) in face-centered-cubic (FCC) metals and alloys have been regarded as an efficient way to simultaneously increase strength and ductility at the nanoscale. Extensive study of dislocation-CTB interaction has been carried out by a combination of computer simulations, experiments and continuum theory. Most of them, however, are based on the perfect CTB assumption. A recent study [Wang YM, Sansoz F, LaGrange T, et al. Defective twin boundaries in nanotwinned metals. Nat Mater. 2013;12(8):697-702.] has revealed the existence of intrinsic kink-like defects in CTBs of nanotwinned copper through nanodiffraction mapping technique, and has confirmed the effect of …


Path Integral Quantum Monte Carlo Study Of Coupling And Proximity Effects In Superfluid Helium-4, Max Graves Jan 2014

Path Integral Quantum Monte Carlo Study Of Coupling And Proximity Effects In Superfluid Helium-4, Max Graves

Graduate College Dissertations and Theses

When bulk helium-4 is cooled below T = 2.18 K, it undergoes a phase transition to a superfluid, characterized by a complex wave function with a macroscopic phase and exhibits inviscid, quantized flow. The macroscopic phase coherence can be probed in a container filled with helium-4, by reducing one or more of its dimensions until they are smaller than the coherence length, the spatial distance over which order propagates. As this dimensional reduction occurs, enhanced thermal and quantum fluctuations push the transition to the superfluid state to lower temperatures. However, this trend can be countered via the proximity effect, where …