Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

University of Tennessee, Knoxville

Doctoral Dissertations

Discipline
Keyword
Publication Year

Articles 1 - 30 of 39

Full-Text Articles in Engineering Science and Materials

Investigation Of Microstructure And Mechanical Behavior Of Novel Powder-Extruded Al-Ce-Mg Alloys, Mairym Vazquez Aug 2023

Investigation Of Microstructure And Mechanical Behavior Of Novel Powder-Extruded Al-Ce-Mg Alloys, Mairym Vazquez

Doctoral Dissertations

Pursuing advanced structural materials with enhanced performance, reduced weight, and lower costs is a constant endeavor in the aerospace and automotive industries. Conventional structural alloys, such as cast irons, carbon steels, and titanium alloys, have strength, weight, and cost limitations. Aluminum-based alloys, known for their lightweight and high strength, have gained popularity in these industries. This dissertation focuses on investigating microstructure and mechanical behavior of novel powder-extruded Al-Ce-Mg alloys as potential candidates for high-performance structural materials.

This research explores using powder extrusion, a well-established forging methodology in the steel industry, to produce Al-Ce-Mg alloys with improved properties and aims to …


Fabrication, Thermophysical, And Mechanical Properties Of Cermet And Cercer Fuel Composites For Nuclear Thermal Propulsion, Neal D. Gaffin Dec 2022

Fabrication, Thermophysical, And Mechanical Properties Of Cermet And Cercer Fuel Composites For Nuclear Thermal Propulsion, Neal D. Gaffin

Doctoral Dissertations

Nuclear thermal propulsion (NTP) utilizes nuclear fission to double the efficiency of
in-space propulsion systems compared with traditional combustion rocket systems.
NTP systems are limited primarily by the fuel material choice, due to the extreme
conditions they will need to endure, including temperatures up to 3000 K, multiple
thermal cycles with rapid heating and cooling, exposure to hot flowing hydrogen,
large thermal gradients, and high neutron flux. Particle based fuels, namely ceramic-
metallic (cermet) and ceramic-ceramic (cercer) composites are both promising fuel
element material candidates for NTP. Given the high temperature nature, these
materials are difficult to fabricate and very …


Pinless Friction Stir Spot Welding Of Ti-6al-4v Alloy For Aerospace Application, Hyojin Park May 2022

Pinless Friction Stir Spot Welding Of Ti-6al-4v Alloy For Aerospace Application, Hyojin Park

Doctoral Dissertations

Friction Stir Spot Welding (FSSW) is a newly developed solid-state joining technique with considerable merits over conventional spot-welding techniques, such as relatively simple procedure and excellent welding properties. It has been successfully implemented for the joining of light-weight structural materials, such as Al- and Mg-based alloys, with superior weldability and reduction of the manufacturing costs and energy consumption. In addition, by removing the pin from the friction stir spot welding tool, the pinless FSSW (p-FSSW) has minimized the formation of welding defects such as keyhole and hooking, which resulted in further improvements in the mechanical properties of weldments. However, the …


Forecasting Nigeria's Electricity Demand And Energy Efficiency Potential Under Climate Uncertainty, Olawale Olabisi Dec 2021

Forecasting Nigeria's Electricity Demand And Energy Efficiency Potential Under Climate Uncertainty, Olawale Olabisi

Doctoral Dissertations

The increasing population and socio-economic growth of Nigeria, coupled with the current, unmet electricity demand, requires the need for power supply facilities expansion. Of all Nigeria’s electricity consumption by sector, the residential sector is the largest and growing at a very fast rate. To meet this growing demand, an accurate estimation of the demand into the future that will guide policy makers to adequately plan for the expansion of electricity supply and distribution, and energy efficiency standards and labeling must be made. To achieve this, a residential electricity demand forecast model that can correctly predict future demand and guide the …


Structural Stability Of Thermosets During Material Extrusion Additive Manufacturing, Stian K. Romberg Dec 2021

Structural Stability Of Thermosets During Material Extrusion Additive Manufacturing, Stian K. Romberg

Doctoral Dissertations

Over the past decade, the scale of polymer additive manufacturing has been revolutionized with machines that print massive thermoplastic parts with greater geometric complexity than can be achieved by traditional manufacturing methods. However, the heat required to print thermoplastics consumes energy and induces thermal gradients that can reduce manufacturing flexibility and final mechanical properties. With the ability to be extruded at room temperature and excellent compatibility with fibers and fillers, thermoset resins show promise to decrease the energy consumption, expand the manufacturing flexibility, and broaden the material palette offered by large-scale polymer additive manufacturing. However, structural instability in the uncured …


Interfacial Bonding Between Thermoset And Thermoplastic Polyurethane Reinforced Textile Grade Carbon Fiber: Structure Property Relationships, Surbhi Subhash Kore Dec 2021

Interfacial Bonding Between Thermoset And Thermoplastic Polyurethane Reinforced Textile Grade Carbon Fiber: Structure Property Relationships, Surbhi Subhash Kore

Doctoral Dissertations

The research work focused on examining the interfacial adhesion of unsized, epoxy, and urethane-sized textile grade carbon fiber (TCF) reinforced in different classes of polyurethane (PU) thermoplastic (TPU) and thermoset (TSU) polyurethane (PU) through the structure-property relationship. The Carbon Fiber Technology Facility (CFTF) at Oak Ridge National Laboratory (ORNL) has produced TCF to reduce the cost of commercial-grade carbon fiber. The first part of the research examined the fundamental relationships between (a) soft segment thermoplastic polyurethane (S-TPU), (b) hard segment thermoplastic polyurethane (H-TPU), (c) thermoset polyurethane (TSU) and TCF reinforcement’s molecular behavior at the interface using the surface and thermal …


Innovations In Aligned And Overmolded Long Fiber Thermoplastic Composites, Shailesh P. Alwekar Dec 2021

Innovations In Aligned And Overmolded Long Fiber Thermoplastic Composites, Shailesh P. Alwekar

Doctoral Dissertations

Long fiber thermoplastic (LFT) composite materials are increasingly used in high performance lightweight automotive, sporting, and industrial applications. LFT composites are processed with extrusion-compression molding (ECM) and/or injection molding (IM). Melt extrusion offers unique opportunities to align long fibers in a thermoplastic polymer melt. The properties of LFT materials are highly influenced by processing techniques which leads to different porosity content, fiber length distribution, and fiber orientation distribution. Hence, it is important to understand the various LFT processing techniques and their effect on mechanical, thermal, and microscopic properties.

The fundamental process-property relationships in LFT composites are investigated in this dissertation. …


Development Of Density-Functional Tight-Binding Methods For Chemical Energy Science, Quan Vuong Aug 2021

Development Of Density-Functional Tight-Binding Methods For Chemical Energy Science, Quan Vuong

Doctoral Dissertations

Density-functional tight-binding (DFTB) method is an approximation to the popular first-principles density functional theory (DFT) method. Recently, DFTB has gained considerable visibility due to its inexpensive computational requirements that confer it the capability of sustaining long-timescale reactive molecular dynamics (MD) simulations while providing an explicit description of electronic structure at all time steps. This capability allows the description of bond formation and breaking processes, as well as charge polarization and charge transfer phenomena, with accuracy and transferability beyond comparable classical reactive force fields. It has thus been employed successfully in the simulation of many complex chemical processes. However, its applications …


Process-Structure-Property Relationships In 3d-Printed Epoxy Composites Produced Via Material Extrusion Additive Manufacturing, Nadim S. Hmeidat May 2021

Process-Structure-Property Relationships In 3d-Printed Epoxy Composites Produced Via Material Extrusion Additive Manufacturing, Nadim S. Hmeidat

Doctoral Dissertations

Extrusion-based additive manufacturing (AM) technologies, such as direct ink writing (DIW), offer unique opportunities to create composite materials and novel multi-material architectures that are not feasible using other AM technologies. DIW is a novel 3D-printing approach in which viscoelastic inks, with favorable rheological properties, are extruded through fine nozzles and patterned in a filament form at room temperature.

Recent developments in DIW of polymer composites have led to expanding the range of materials used for printing, as well as introducing novel deposition strategies to control filler orientation and create improved functional/structural composite materials. Despite these substantial advancements, the successful and …


Mechanics Of The Solid-State Bonding Under Severe Thermomechanical Processes, Xue Wang Dec 2020

Mechanics Of The Solid-State Bonding Under Severe Thermomechanical Processes, Xue Wang

Doctoral Dissertations

Friction stir welding (FSW) has found increased applications in automotive and aerospace industries due to its advantages of solid-state bonding, no fusion and melting, and versatility in various working conditions and material combinations. The extent and quality of the solid-state bonding between workpieces in FSW is the ultimate outcome of their industrial applications. However, the relationship among processing parameters, material properties, and bonding extent and fidelity remains largely empirical, primarily because of the lack of the mechanistic understanding of (1) tool-workpiece frictional behavior, and (2) bonding formation and evolution.

In this dissertation, to study the underlying mechanism of tool-workpiece frictional …


Development Of A Novel Casting Alloy Composed Of Aluminum And Cerium With Other Minor Additions, Zachary Cole Sims Dec 2020

Development Of A Novel Casting Alloy Composed Of Aluminum And Cerium With Other Minor Additions, Zachary Cole Sims

Doctoral Dissertations

Eutectic casting alloys of aluminum and cerium are a recent discovery and early research describes an alloy with great potential to meet the growing demand for a lightweight, economical, high specific strength material for use in high-temperature or extremely corrosive environments. The broad application of aluminum alloys across industry sectors is driven by their collection of balanced properties including economical cost, high specific strength, and flexibility of their production pathways. Additionally, their high corrosion resistance makes them a good choice for structural materials. Despite this, the push to use aluminum alloys in ever more extreme environments with higher temperatures, stresses, …


Design And Development Of Strong And Ductile Single Bcc Refractory High-Entropy Alloys For High-Temperature Applications, Chanho Lee Aug 2020

Design And Development Of Strong And Ductile Single Bcc Refractory High-Entropy Alloys For High-Temperature Applications, Chanho Lee

Doctoral Dissertations

The objectives of this proposed study are to (1) design and develop single BCC phase refractory high-entropy alloys (HEAs) for the high-temperature applications, (2) investigate the deformation mechanisms of refractory HEAs, (3) improve an integrated approach, coupling focused experiments and theoretical modeling, to design, discover, and develop HEAs, and (4) understand the alloy design-microstructure-property-performance links underlying the mechanical behavior of refractory HEA systems for gas-turbine applications

A traditional alloy system generally includes one or two principal elements that form the matrix with other additional elements, e.g., iron or aluminum alloys, to strengthen some specific properties, such as strength and corrosion …


Correlating Long-Term Lithium Ion Battery Performance With Solid Electrolyte Interphase (Sei) Layer Properties, Seong Jin An Aug 2017

Correlating Long-Term Lithium Ion Battery Performance With Solid Electrolyte Interphase (Sei) Layer Properties, Seong Jin An

Doctoral Dissertations

This study was conducted to understand effects of some of key factors (i.e., anode surface properties, formation cycling conditions, and electrolyte conditions) on solid electrolyte interphase (SEI) formation in lithium ion batteries (LIBs) and the battery cycle life. The SEI layer passivates electrode surfaces and prevents electron transfer and electrolyte diffusion through it while allowing lithium ion diffusion, which is essential for stable reversible capacities. It also influences initial capacity loss, self-discharge, cycle life, rate capability and safety. Thus, SEI layer formation and electrochemical stability are primary topics in LIB development. This research involves experiments and discussions on key factors …


Microstructure Control And Correlation To Creep Properties In Grade 91 Steel Weldment After Thermo-Mechanical Treatments And An Fe-30cr-3al Alloy Strengthened By Fe2nb Laves Phase, Benjamin Allen Shassere Dec 2016

Microstructure Control And Correlation To Creep Properties In Grade 91 Steel Weldment After Thermo-Mechanical Treatments And An Fe-30cr-3al Alloy Strengthened By Fe2nb Laves Phase, Benjamin Allen Shassere

Doctoral Dissertations

Type IV cracking in weldments of steel pipes after creep deformation is a concern in modern fossil-fueled power plants. Two possible methods for minimizing or eliminating Type IV cracking will be discussed. The first method alters the initial microstructure of typical Grade 91 steel base metal before welding, while the second provides baseline microstructure characteristics and creep performance of a new alloy that is strengthened by the intermetallic Fe2Nb Laves phase. The initial microstructure of the Grade 91 steel can be controlled by Thermo-Mechanical Treatments, which aids in precipitation of fine (5-10 nm) MX particles in austenite before transformation to …


Development And Application Of 3-D Fuel Performance Modeling To Assess Missing Pellet Surface Influence On Pellet Clad Interaction And Clad Failure, Nathan Allen Capps May 2016

Development And Application Of 3-D Fuel Performance Modeling To Assess Missing Pellet Surface Influence On Pellet Clad Interaction And Clad Failure, Nathan Allen Capps

Doctoral Dissertations

In the late 1970s PCI related failures caused the implementation of startup ramp restrictions. These ramp restrictions where intended to reduce the stresses caused by pellet cladding contact. These ramp restrictions had a significant impact on Westinghouse fueled PWRs, reducing PCI related failure until 2003. Through investigation into these fuel rod failures lead to the conclusion that missing pellet surfaces (MPS) were the root cause of the failures. MPS are local geometric defects in nuclear fuel pellets that result from pellet mishandling or the manufacturing process. The presence of MPS defects can cause stress concentrations in the clad of sufficient …


Failure Simulations At Multiple Length Scales In High Temperature Structural Alloys, Chao Pu Dec 2015

Failure Simulations At Multiple Length Scales In High Temperature Structural Alloys, Chao Pu

Doctoral Dissertations

A number of computational methodologies have been developed to investigate the deformation and damage mechanism of various structural materials at different length scale and under extreme loading conditions, and also to provide insights in the development of high-performance materials.

In microscopic material behavior and failure modes, polycrystalline metals of interest include heterogeneous deformation field due to crystalline anisotropy, inter/intra grain or phase and grain boundary interactions. Crystal plasticity model is utilized to simulate microstructure based polycrystalline materials, and micro-deformation information, such as lattice strain evolution, can be captured based on crystal plasticity finite element modeling (CPFEM) in ABAQUS. The comparison …


Dynamic Simulation And Neuromuscular Control Of Movement: Applications For Predictive Simulations Of Balance Recovery, Misagh Mansouri Boroujeni May 2015

Dynamic Simulation And Neuromuscular Control Of Movement: Applications For Predictive Simulations Of Balance Recovery, Misagh Mansouri Boroujeni

Doctoral Dissertations

Balance is among the most challenging tasks for patients with movement disorders. Study and treatment of these disorders could greatly benefit from combined software tools that offer better insights into neuromuscular biomechanics, and predictive capabilities for optimal surgical and rehabilitation treatment planning. A platform was created to combine musculoskeletal modeling, closed-loop forward dynamic simulation, optimization techniques, and neuromuscular control system design. Spinal (stretch-reflex) and supraspinal (operational space task-based) controllers were developed to test simulation-based hypotheses related to balance recovery and movement control. A corrective procedure (rectus femoris transfer surgery) was targeted for children experiencing stiff-knee gait and how this procedure …


Energy Selective Neutron Imaging For The Characterization Of Polycrystalline Materials, Robin Woracek May 2015

Energy Selective Neutron Imaging For The Characterization Of Polycrystalline Materials, Robin Woracek

Doctoral Dissertations

This multipart dissertation focuses on the development and evaluation of advanced methods for material testing and characterization using neutron diffraction and imaging techniques. A major focus is on exploiting diffraction contrast in energy selective neutron imaging (often referred to as Bragg edge imaging) for strain and phase mapping of crystalline materials. The dissertation also evaluates the use of neutron diffraction to study the effect of multi-axial loading, in particular the role of applying directly shear strains from the application of torsion. A portable tension-torsion-tomography loading system has been developed for in-situ measurements and integrated at major user facilities around the …


Single Fiber Mechanical Properties Using Nano-Tensile Testing And Carbon Fiber Structure-Property Relationship, Matthew Erich Kant Dec 2014

Single Fiber Mechanical Properties Using Nano-Tensile Testing And Carbon Fiber Structure-Property Relationship, Matthew Erich Kant

Doctoral Dissertations

Single carbon fibers are studied using a nano-tensile testing system. This system has unprecedented load and displacement resolution, nN and nm respectively, and the ability to perform dynamic testing for storage and loss modulus during quasi-static tensile extension. Furthermore, improved fiber mounting and alignment procedures coupled with the precision of the nano-tensile testing system assist in unprecedented resolution in single fiber mechanical testing for axial modulus and strength. Hence, using these unique capabilities, the moduli and their statistical distribution of many high performance carbon fibers are reported here. From this, a simplified single parameter model describing the strain dependent modulus …


Nanolayer Polymeric Coatings To Enhance The Performance And Service Life Of Inorganic Membranes For High Temperature-High Pressure Biomass Pretreatment And Other Applications, Vincent C. Kandagor May 2014

Nanolayer Polymeric Coatings To Enhance The Performance And Service Life Of Inorganic Membranes For High Temperature-High Pressure Biomass Pretreatment And Other Applications, Vincent C. Kandagor

Doctoral Dissertations

Membrane technology has become increasingly attractive in several applications including water filtration, food industry, oil and gas, and biomedical applications. Most recently the quest for renewable, bioenergy has called for use of membranes in biomass pretreatment and other stages of producing biofuel. The success and advancement of the membrane technology for these various applications has, however, been impeded by the fouling of membranes, which causes the pores in the microporous structure to block, resulting in reduced efficiency, and in some cases, total failure of the membranes system. This challenge leads to a tremendous increase in the cost of using membranes …


A Study Of Indentation Cracking In Brittle Materials Using Cohesive Zone Finite Elements, Kurt E. Johanns May 2014

A Study Of Indentation Cracking In Brittle Materials Using Cohesive Zone Finite Elements, Kurt E. Johanns

Doctoral Dissertations

Cohesive zone finite element simulations of pyramidal indentation cracking in brittle materials have been carried out in order to: (1) critically examine indentation cracking models that relate fracture toughness to indentation data; (2) determine the underlying physical mechanisms of indentation crack growth from a continuum view and their relationship to material properties; (3) explore the influence of indenter geometry on crack extension; and (4) provide a platform from which future simulations can add more complex material behavior as well as guidance for experimental measurements of fracture toughness. Standard fracture toughness geometries in addition to simplified indentation geometries were simulated in …


Structure And Energetics Of Nanoparticles And Ionomer Films In Fuel Cell Catalyst Layers, Qianping He Dec 2013

Structure And Energetics Of Nanoparticles And Ionomer Films In Fuel Cell Catalyst Layers, Qianping He

Doctoral Dissertations

Improving the durability and utilization efficiency of the platinum-on-carbon (Pt/C) catalyst is of vital importance to the commercialization of the polymer electrolyte membrane fuel cell (PEMFC). This body of work provides molecular level insights to aid the fulfillment of this goal. Chapter 1 describes the use of molecular dynamics (MD) simulation in an effort to understand the Pt/C degradation issue from the nano-adhesion point of view. The roles of catalyst nanoparticle size, shape, Pt/C surface oxidation and the extent of ionomer film hydration are investigated to study their effects on nano-particle adhesion. It is found that the adhesion force strengthens …


Structure And Morphology Of Sulfonated Polysulfone And Perfluorosulfonic Acid Ionomers, Chen Wang Aug 2013

Structure And Morphology Of Sulfonated Polysulfone And Perfluorosulfonic Acid Ionomers, Chen Wang

Doctoral Dissertations

The limitations of conventional perfluorosulfonic acid (PFSA) based membrane materials have provoked the search for alternative materials which can function as the electrolyte in PEM fuel cells operated at higher temperatures (> 100 °C) and without humidification. A novel class of sulfonated poly(phenylene) sulfone (sPSO2) ionomers have shown much higher proton conductivity than typical PFSA membranes at elevated temperatures. In this dissertation, both computational and experimental methods were used to investigate proton transfer, morphological and structural properties of sPSO2 and PFSA ionomers. We have undertaken ab initio electronic structure calculations to understand the primary hydration and the transfer of protons …


Dynamic Mutual Capacitive Sensor For Human Interactions., Jonathan William Huber May 2013

Dynamic Mutual Capacitive Sensor For Human Interactions., Jonathan William Huber

Doctoral Dissertations

This dissertation introduces the novel concept of removing the ground conductive plate by utilizing body capacitance as the ground in the capacitive sensor, whereby circuit pressure sensing can occur with only one plate and one dielectric. Additionally, body capacitance sensing was limited to a binary touch-no-touch output, whereas the method presented here can sense various applied pressures. The resulting circuit acts as an antenna that receives local capacitance signals from a human interaction.

The advantage of this design is that it allows for both proximity sensing and pressure sensing (once the body part is touching the dielectric material). This setup …


Measurement Of Power-Law Creep Parameters By Instrumented Indentation Methods, Caijun Su Aug 2012

Measurement Of Power-Law Creep Parameters By Instrumented Indentation Methods, Caijun Su

Doctoral Dissertations

New experimental methods have been developed to measure the uniaxial power-law creep parameters α [alpha] and n in the relation έ[epsilon dot]=α[alpha]σn[sigma] (έ [epsilon dot] is the creep strain rate and σ [sigma] is the creep stress) from the load, time, displacement and stiffness data recorded during an instrumented indentation experiment performed with a conical or pyramidal indenter. The methods are based on an analysis of Bower et al., which relates the indentation creep rate to the uniaxial creep parameters based on simple assumptions about the constitutive behavior (Bower et al., 1993 …


Modeling And Development Of A Mems Device For Pyroelectric Energy Scavenging, Salwa Mostafa Aug 2011

Modeling And Development Of A Mems Device For Pyroelectric Energy Scavenging, Salwa Mostafa

Doctoral Dissertations

As the world faces an energy crisis with depleting fossil fuel reserves, alternate energy sources are being researched ever more seriously. In addition to renewable energy sources, energy recycling and energy scavenging technologies are also gaining importance. Technologies are being developed to scavenge energy from ambient sources such as vibration, radio frequency and low grade waste heat, etc. Waste heat is the most common form of wasted energy and is the greatest potential source of energy scavenging.

Pyroelectricity is the property of some materials to change the surface charge distribution with the change in temperature. These materials produce current as …


Flame Retardant Mattress Pads, Manjeshwar Ganeshaq Kamath Aug 2009

Flame Retardant Mattress Pads, Manjeshwar Ganeshaq Kamath

Doctoral Dissertations

Focus of this research is on developing cotton-based nonwoven mattress pads with flame retardant (FR) properties by blending cotton with other commercially available fibers, binders, and followed by chemical treatments; offering a cost-effective recipe to meet the upcoming flammability standards. Furthermore this research explores the opportunities taking advantage of possible synergistic effects to achieve maximum performance.

Recent changes in the flammability regulations require improvements in the flame resistance of cotton-containing consumer goods such as upholstered furniture, mattresses, and pillows. Cotton, synthetic fibers, fabrics, and foam are the basic constituents of these goods that are often the first to be engulfed …


A Study Of Indentation Creep Using The Finite Element Method, Sangjoon Sohn Dec 2007

A Study Of Indentation Creep Using The Finite Element Method, Sangjoon Sohn

Doctoral Dissertations

Indentation is a useful technique for studying the mechanical properties of a material. Measurable mechanical properties from indentation include time-dependent as well as time independent properties. Among these mechanical properties, time-dependent permanent deformation (creep) is of interest in this study. The purpose of this study is to explore the behavior of creep deformation of a solid under indentation. The main scientific research tool will be the finite element method.

Existing works by others provide limited solutions that allow us to correlate uniaxial creep to indentation creep. In this study, the task is taken a step further to enhance and modify …


Numerical Simulation Of Separating Flows Using Computational Models Based On The Vorticity Confinement Method, Lesong Wang Dec 2003

Numerical Simulation Of Separating Flows Using Computational Models Based On The Vorticity Confinement Method, Lesong Wang

Doctoral Dissertations

The objective of the present research is to investigate the recent development of the vorticity confinement method. First, a new formulation of the vorticity confinement term is studied. Advantages of the new formulation over the original one include the ability to conserve the momentum, and the ability to preserve the centroid motion of some flow properties such as the vorticity magnitude. Next, new difference schemes, which are simpler and more efficient than the old schemes, are discussed. At last, two computational models based on the vorticity confinement method are investigated. One of the models is devised to simulate inviscid flows …


Directional Solidification, Microstructures And Mechanical Properties Of Cr-Cr3si Eutectic Alloys, Hongbin Bei Dec 2003

Directional Solidification, Microstructures And Mechanical Properties Of Cr-Cr3si Eutectic Alloys, Hongbin Bei

Doctoral Dissertations

Alloys based on intermetallics have been considered for high temperature structural applications. However, many of these alloys suffer from intrinsic brittleness and low fracture toughness at ambient temperature. Therefore, ductile-phase-toughened intermetallic composites are being investigated as a means to improve the fracture toughness. A subset of this class of materials is in-situ composites produced by directional solidification of intermetallic eutectics. In this study, the Cr-Cr3Si eutectic system is selected as a model system to investigate composites by directional solidification, where the strong, but brittle Cr3Si is combined with a more ductile Cr-rich solid solution.

A series …