Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering Science and Materials

Cavitation Modelling Based On Eulerian-Eulerian Multiphase Flow, Rachid Bannari Ph.D Jun 2011

Cavitation Modelling Based On Eulerian-Eulerian Multiphase Flow, Rachid Bannari Ph.D

Rachid BANNARI

Cavitation is a physical phenomenon encountered in the normal operation of hydraulic turbines. It can lead to loss in efficiency, vibrations and blade erosion damages. It is crucial to accurately predict cavitation development and evolution to make confident predictive results for hydraulic turbines in a cavitating regime. The cavity closure is a critical region that is characterized by its unsteady and unstable behavior. In this region, liquid and vapor are highly mixed and experienced a strong interaction between the cavity and the outer flow. Most of the published work is based on the mixture multiphase model. An important limitation of …


Comparison Between Direct Quadrature Method Of Moments And The Method Of Classes For Bubbly Flow, Brahim Selma, Rachid Bannari, Pierre Proulx Jun 2009

Comparison Between Direct Quadrature Method Of Moments And The Method Of Classes For Bubbly Flow, Brahim Selma, Rachid Bannari, Pierre Proulx

Rachid BANNARI

No abstract provided.


A Coupled Cfd-Kinetic Models For Cellulase Production In Airlift Reactor, Rachid Bannari, Abdelfettah Bannari, Brahim Selma, Pierre Proulx Apr 2009

A Coupled Cfd-Kinetic Models For Cellulase Production In Airlift Reactor, Rachid Bannari, Abdelfettah Bannari, Brahim Selma, Pierre Proulx

Rachid BANNARI

Cellulase production provides a catalyst for cellulose hydrolysis to glucose, to be used for eventual production of ethanol. The transport of reactants may influence the reaction rate remarkably, for the biological reaction, especially the enzymatic reaction, The transport behavior of the components in a biological system should be considered in the model. In this work, we propose a coupled model between hydrodynamics (twoPhaseEuler- Foam) and a kinetic model for batch and fed-batch cellulase enzyme production by T. reesei from cellulose/lactose substrate which is constructed from literature concepts and laboratory data. Good agreement is obtained between the results and experimental data.