Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Engineering Science and Materials

Effects Of Forcing Time Scale On The Simulated Turbulent Flows And Turbulent Collision Statistics Of Inertial Particles, B. Rosa, H. Parishani, O. Ayala, L.-P. Wang Jan 2015

Effects Of Forcing Time Scale On The Simulated Turbulent Flows And Turbulent Collision Statistics Of Inertial Particles, B. Rosa, H. Parishani, O. Ayala, L.-P. Wang

Engineering Technology Faculty Publications

In this paper, we study systematically the effects of forcing time scale in the large-scale stochastic forcing scheme of Eswaran and Pope ["An examination of forcing in direct numerical simulations of turbulence," Comput. Fluids 16, 257 (1988)] on the simulated flow structures and statistics of forced turbulence. Using direct numerical simulations, we find that the forcing time scale affects the flow dissipation rate and flow Reynolds number. Other flow statistics can be predicted using the altered flow dissipation rate and flow Reynolds number, except when the forcing time scale is made unrealistically large to yield a Taylor microscale flow Reynolds …


Effects Of Gravity On The Acceleration And Pair Statistics Of Inertial Particles In Homogeneous Isotropic Turbulence, H. Parishani, O. Ayala, B. Rosa, L.-P. Wang, W. W. Grabowski Jan 2015

Effects Of Gravity On The Acceleration And Pair Statistics Of Inertial Particles In Homogeneous Isotropic Turbulence, H. Parishani, O. Ayala, B. Rosa, L.-P. Wang, W. W. Grabowski

Engineering Technology Faculty Publications

Within the context of heavy particles suspended in a turbulent airflow, we study the effects of gravity on acceleration statistics and radial relative velocity (RRV) of inertial particles. The turbulent flow is simulated by direct numerical simulation (DNS) on a 2563 grid and the dynamics of O(106) inertial particles by the point-particle approach. For particles/droplets with radius from 10 to 60 µm, we found that the gravity plays an important role in particle acceleration statistics: (a) a peak value of particle acceleration variance appears in both the horizontal and vertical directions at a particle Stokes number …


Dc Pulsed Atmospheric Pressure Plasma Jet Image Information, Denis P. Dowling, F T. O'Neill, Vladimir Milosavljevic, Victor J. Law Nov 2011

Dc Pulsed Atmospheric Pressure Plasma Jet Image Information, Denis P. Dowling, F T. O'Neill, Vladimir Milosavljevic, Victor J. Law

Articles

This paper presents optical imaging and optical emission spectroscopy (OES) data of an atmospheric-pressure plasma jet. It is shown how the visual information and OES information of the air discharge are related as the blown arc extends from the nozzle (2-4 mm) with a molecular nitrogen rotational temperature on the order of 1700 K and the flowing afterglow beyond this region is dominated by the cooler (300-K) NO-O chemiluminescent reaction that produces NO2 species.


Hand-Held Flyback Driven Coaxial Dielectric Barrier Discharge: Development And Characterization, Victor J. Law, Vladimir Milosavljevic, Neil O’Connor, James F. Lalor, Steven Daniels Sep 2008

Hand-Held Flyback Driven Coaxial Dielectric Barrier Discharge: Development And Characterization, Victor J. Law, Vladimir Milosavljevic, Neil O’Connor, James F. Lalor, Steven Daniels

Articles

The development of a handheld single and triple chamber atmospheric pressure coaxial dielectric barrier discharge driven by Flyback circuitry for helium and argon discharges is described. The Flyback uses external metal-oxide-semiconductor field-effect transistor power switching technology and the transformer operates in the continuous current mode to convert a continuous dc power of 10–33 W to generate a 1.2–1.6 kV 3.5 μs pulse. An argon discharge breakdown voltage of ∼768 V is measured. With a 50 kHz, pulse repetition rate and an argon flow rate of 0.5–10 argon slm (slm denotes standard liters per minute), the electrical power density deposited in …